[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)20 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
852
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/10(木)07:08 ID:J4CWtGen(1/3) AAS
>>848-851
ふっふ、ほっほ
もう詰んだのか?w ;p)

 >>727より再録
>”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”
この式は、下記(ja.ipedia)のペアノの公理 自然数の集合論的構成 の式だが
上記の通り、∩のIterated binary operation の意味が不明確(この説明を求められると詰まるだろう)
なので、∩を使わない 別の工夫がある(下記)
例えば en.wikipedia Axiom of infinity, Extracting the natural numbers from the infinite set, Alternative method
あるいは fr.wikipedia Axiome de l'infini
あるいは、>>569 筑波大 坪井明人 PDF P9 外部リンク[pdf]:www.math.tsukuba.ac.jp 数理論理学II
あるいは、>>677 渕野昌 P10(無限公理)外部リンク[pdf]:fuchino.ddo.jp 「ゲーデルと20世紀の論理学第4巻」(東京大学出版会,2007)の,渕野 昌の執筆した第I部
以上
(引用終り)

繰り返すが、∩のIterated binary operation の意味が不明確

さらに、wikipedia Axiom of infinity 記述を引用する >>630-631 より
外部リンク:en.wikipedia.org
Axiom of infinity
Extracting the natural numbers from the infinite set
The infinite set I is a superset of the natural numbers. To show that the natural numbers themselves constitute a set, the axiom schema of specification can be applied to remove unwanted elements, leaving the set N of all natural numbers. This set is unique by the axiom of extensionality.
To extract the natural numbers, we need a definition of which sets are natural numbers. The natural numbers can be defined in a way that does not assume any axioms except the axiom of extensionality and the axiom of induction—a natural number is either zero or a successor and each of its elements is either zero or a successor of another of its elements. In formal language, the definition says:
∀n(n∈N⟺([n=∅∨∃k(n=k∪{k})]∧∀m∈n[m=∅∨∃k∈n(m=k∪{k})])).
Or, even more formally:
∀n(n∈N⟺([∀k(¬k∈n)∨∃k∀j(j∈n⟺(j∈k∨j=k))]∧
 ∀m(m∈n⇒[∀k(¬k∈m)∨∃k(k∈n∧∀j(j∈m⟺(j∈k∨j=k)))]))).

つづく
853
(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/10(木)07:09 ID:J4CWtGen(2/3) AAS
つづき

Alternative method
An alternative method is the following. Let
Φ(x) be the formula that says "x is inductive"; i.e.
Φ(x)=(∅∈x∧∀y(y∈x→(y∪{y}∈x))).
Informally, what we will do is take the intersection of all inductive sets. More formally, we wish to prove the existence of a unique set W such that
∀x(x∈W↔∀I(Φ(I)→x∈I)). (*)
For existence, we will use the Axiom of Infinity combined with the Axiom schema of specification.
Let I be an inductive set guaranteed by the Axiom of Infinity. Then we use the axiom schema of specification to define our set
W={x∈I:∀J(Φ(J)→x∈J)}
– i.e. W is the set of all elements of I, which also happen to be elements of every other inductive set. This clearly satisfies the hypothesis of (*), since if x∈W, then
x is in every inductive set, and if
x is in every inductive set, it is in particular in I, so it must also be in W.
For uniqueness, first note that any set that satisfies (*) is itself inductive, since 0 is in all inductive sets, and if an element
x is in all inductive sets, then by the inductive property so is its successor. Thus if there were another set
W′ that satisfied (*) we would have that
W′⊆W since
W is inductive, and
W⊆W′since
W′is inductive. Thus W=W′.
Let ω denote this unique element.
This definition is convenient because the principle of induction immediately follows: If
I⊆ω is inductive, then also
ω⊆I, so that I=ω.■
(引用終り)

つまり、ペアノの公理とは、平たく言えば
スタートの0があって、その後者1があって
後者関数 S:前者→前者+1
を無限に繰り返すと自然数の集合N=ω が得られるというものだ

問題は、公理的集合論の立場は、ラッセルのパラドックス 外部リンク:ja.wikipedia.org
を避けるために、集合と認めるのは厳格に抑制すべきってこと
だから、有限の後者関数を繰り返して、「はい、無限集合Nです」は認めない
だから、無限公理が必要です。無限公理は、後者関数の無限繰返しを含む集合N存在を認める
だから、無限公理からできた よくわからない Nを含む集合Aから Nのみを取り出す作業が必要
それを、上記のen.wikipediaや、fr.wikipedia、筑波大 坪井明人 、渕野昌 「ゲーデルと20世紀の論理学第4巻」などでは
∩は、使わない。∩は 無駄に話を複雑にしているよ
で、再度いうが ∩のIterated binary operation の意味が不明確
君がするべきことは、屁理屈のこね繰り回しではなく
この自然数Nの定義が、実際に無限公理を使って、2項演算∩の繰返しで
N={0,1,2,3,・・・} であることを証明することだよ
それが出来ないから、必死の屁理屈だろ? それ、丸わかりだよw ;p)>>847
以上
872: 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/10(木)20:53 ID:J4CWtGen(3/3) AAS
>>838-840
ID:ulVaLxmWは、おっちゃんかな?
お元気そうでなによりです。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.040s