[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)20 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
625
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/18(水)10:35 ID:1ZjEJMOG(1/4) AAS
>>621-624
ふっふ、ほっほ

(引用開始)
>>∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}
>>はAの部分集合族の共通部分。範囲の明示なんて要らないよw
オチコボレ君はなんで範囲の明示が要らないかチンプンカンプンなんだろうね。
添字付けられた集合族ではないからそもそも範囲という概念が無いんだよw
(引用終り)

まあ、素人考えだな
(普通ではあるが、公理的集合論にはなじまない)

ツッコミどころは
1)”旅の途中”*)
2)∩(集合積)は、俗にいう構造敏感だということ
( *)”旅の途中”という昔流行った歌がある 外部リンク:ja.wikipedia.orgなど)

さて、まず1)について、そもそも公理による無限集合N(自然数の集合)の構築について
素朴には、ペアノ公理による 0,1,2,3・・・をすべて集めて、集合にすれば よかんべだが

問題は、ラッセルパラドックスで、無限に関する操作を 無制限に認めるのはまずってことだ
そこで、集合論の公理を設定して、抑制的に集合操作をして カントールやデデキントの素朴集合論の構築をしようとなった
いまは、”旅の途中”で 無限集合N(自然数の集合)さえ、まだ得ていない

ちょっと脱線するが、誰しも考えるのは 素朴単純に 公理として
”ペアノ公理による 0,1,2,3・・・をすべて集めて、集合Nが出来た”(0,1,2,3・・・たちはノイマン後者関数による)
を公理として 決めればよかんべ と思う
ところが、次には 自然数の集合Nより大きな集合を認めるかどうかが問題になるのです
そこで、公理としては 自然数の集合Nを含む大きな集合の存在を公理として認めて、Nはそこから落としてくる
この方が公理としてキレイなのだ

次に、2)について >>571から再録すると
”簡単に例示すると、5つの集合A,B,C,D,Eにおいて
∩{A,B,C} 3つだけの積集合と
∩{A,B,C,D,E} 5つ全部の積集合とでは
当然 積集合の大きさが異なる”
繰り返すが、100個の集合の積∩に 新たに一つ集合が増えると
∩{100個} ≠∩{101個}となる可能性が高い というか そう考えるべきなのだ
記号∩を使う問題点は、そこにある

つまり、冒頭の∩の式で無限の集合全て "∀"が きちんと尽くされたという保証がないと
最小であるべき無限集合たる自然数Nの定義に曖昧さが残ることになる
ところが、そもそも”無限集合”の概念が確立されていない
(”旅の途中”では 無限集合族などを無造作に使うべきではない)

対して、>>571 Extracting the natural numbers from the infinite set 外部リンク:en.wikipedia.org
や、>>569 筑波大 坪井明人 PDF P9 が やっていることは
無限公理で保証されたNを含む無限集合の部分集合として 再度 ペアノ公理による 0,1,2,3・・・をすべて集めて 部分集合として構築するってことだね
しかも、公理で許される集合操作のみを使ってってこと

君の 部分集合族の議論は、最終段階では正しいだろうが
いまは、”旅の途中”ってことよ
629
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/18(水)17:02 ID:1ZjEJMOG(2/4) AAS
>>626-628
素人が、グダグダ言い訳している

さて
1)なぜ無限公理が必要なのか?
 その答えが 下記 渕野”Dedekind の数学の基礎付けと集合論の公理化”
 P173-174 "3 無限の存在証明"に記されている通り
 「無限の存在が集合論の他の公理から独立である」ってこと
2)集合論の公理は”スッキリ”していることが求められる
 なので、>>625に示したように 単に 自然数の集合Nの存在だけを公理とするのではなく
 Nを含む(Nより大きな)集合の存在を公理として認めて、それ以外の公理系から
 もし”Extracting the natural numbers from the infinite set”(下記)が可能なら
 その方がスッキリだってこと(我々が求めているのは そのさらに先で N→Q→Rと 順序数*)の構築なのだから)
 *)外部リンク:ja.wikipedia.org
3)下記に ”Extracting the natural numbers from the infinite set”を
 全文引用しておいたから、百回音読してね
 文中で、axiom schema of specification 、axiom of extensionality、 axiom of induction
 など 使う公理が明示されているでしょ? そして 最後”I=ω”が結論ですよ!

素人が、グダグダ書いても
なんの格好付けにもなってないよw
(参考)
外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
RIMS講究録
Dedekind の数学の基礎付けと集合論の公理化 渕野昌(神大)2011
P170
無い物ねだり的な指摘をすることはたやすい.彼の時代には,現代の我々が識るような形式論理はまだ生れてすらいなかった(彼とほぼ同時代のFrege の研究には形式論理学の萌芽のようなものが見られるが,[3] の第2版の前書き(1893)では,Dedekind は,Frege の仕事を後になってからはじめて知ることになったと書いている).いわんや,形式的推論の体系や,その体系の完全性,そして不完全性定理に基づく知見は,どう頑張ったとしてもDedekindの行なった考察の背景にはなり得なかったはずのものである
P173
3 無限の存在証明
単純無限的体系によって自然数の全体の体系の基礎付けがなされうるためには,
そもそも無限集合の存在が大前提となる.しかも,これが,「数の理論を扱かう論理学の部分の基礎付け」としてなされるためには,無限集合の存在が無条件に証明できなくてはならない.
P174
晩年のDedekind が,無限の存在証明([3] の66.) の残ったままのテキストをこの再版に回してしまったことの背景だったのではないだろうか.
ただし,Dedekind の名誉のために付け加えておくと,1911 年の時点では,無限の存在が集合論の他の公理から独立であることは,当時の若い集合論の研究者たちすら,まだ完全には把握しきれていなかった可能性がある
P176
集合論の基礎に関してDedekind の越えられなかった壁は,Zermelo やFraenkelが易々と越えることができたが,このZermelo も後にG"odel の不完全性定理を全く理解できず,不完全性定理以降の数学の発展に取り残されることになっ
た. 1960 年代に強制法の理論が確立されたときにも,この手法を理解できなかったことで,多くの集合論の研究者が脱落していった

つづく
630
(2): 06/18(水)17:03 ID:1ZjEJMOG(3/4) AAS
つづき
集合論の研究の内部でも,Cantor とDedekind の集合論について述べたよ
うな,「純粋集合論」と「数学としての集合論」の問の大きな分離は早い時期か
ら見られたが,20 世紀の終りごろから,この2 つの集合論の潮流が合流し,新
しいパラダイムが生れつつあるように見える.

(ついでに下記も)
外部リンク[pdf]:fuchino.ddo.jp
RIMS研究集会「数学史の研究」での講演 2010
Kronecker,Dedekind,Hilbert on the Foundation of Arithemetic
渕野昌神戸大学大学院システム情報学研究科

外部リンク:www.jstage.jst.go.jp
外部リンク:www.jstage.jst.go.jp
数学 2013 Volume 65 Issue 4 Pages 411-421
特別企画 これから学ぶ人のために
公理的集合論 渕野昌

外部リンク:en.wikipedia.org
Axiom of infinity
Extracting the natural numbers from the infinite set
The infinite set I is a superset of the natural numbers. To show that the natural numbers themselves constitute a set, the axiom schema of specification can be applied to remove unwanted elements, leaving the set N of all natural numbers. This set is unique by the axiom of extensionality.

To extract the natural numbers, we need a definition of which sets are natural numbers. The natural numbers can be defined in a way that does not assume any axioms except the axiom of extensionality and the axiom of induction—a natural number is either zero or a successor and each of its elements is either zero or a successor of another of its elements. In formal language, the definition says:
∀n(n∈N⟺([n=∅∨∃k(n=k∪{k})]∧∀m∈n[m=∅∨∃k∈n(m=k∪{k})])).
Or, even more formally:
∀n(n∈N⟺([∀k(¬k∈n)∨∃k∀j(j∈n⟺(j∈k∨j=k))]∧
 ∀m(m∈n⇒[∀k(¬k∈m)∨∃k(k∈n∧∀j(j∈m⟺(j∈k∨j=k)))]))).
つづく
631
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/18(水)17:04 ID:1ZjEJMOG(4/4) AAS
つづき
Alternative method
An alternative method is the following. Let
Φ(x) be the formula that says "x is inductive"; i.e.
Φ(x)=(∅∈x∧∀y(y∈x→(y∪{y}∈x))).
Informally, what we will do is take the intersection of all inductive sets. More formally, we wish to prove the existence of a unique set W such that
∀x(x∈W↔∀I(Φ(I)→x∈I)). (*)
For existence, we will use the Axiom of Infinity combined with the Axiom schema of specification.
Let I be an inductive set guaranteed by the Axiom of Infinity. Then we use the axiom schema of specification to define our set
W={x∈I:∀J(Φ(J)→x∈J)}
– i.e. W is the set of all elements of I, which also happen to be elements of every other inductive set. This clearly satisfies the hypothesis of (*), since if x∈W, then
x is in every inductive set, and if
x is in every inductive set, it is in particular in I, so it must also be in W.

For uniqueness, first note that any set that satisfies (*) is itself inductive, since 0 is in all inductive sets, and if an element
x is in all inductive sets, then by the inductive property so is its successor. Thus if there were another set
W′ that satisfied (*) we would have that
W′⊆W since
W is inductive, and
W⊆W′since
W′is inductive. Thus W=W′.
Let ω denote this unique element.

This definition is convenient because the principle of induction immediately follows: If
I⊆ω is inductive, then also
ω⊆I, so that I=ω.■
(引用終り)
以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.035s