雑談はここに書け!【67】 (500レス)
1-

386: 09/25(木)18:25 ID:ABGVOhvU(5/7) AAS
可算無限個の a>1 なる無理数aが存在して、aに収束する「単調増加な有理数列」が存在しない

可算無限個の a>1 なる無理数aが存在して、
aに収束しかつ任意の正の整数nに対して a_n>1 なる
単調増加な有理数列 {a_n} は存在しない
387: 09/25(木)18:25 ID:aZI0hRM2(3/4) AAS
>>379
「溝畑・竹内」という「日本人の名前」に拘るのはれいのひとかな。
基本的にそんなことはどうでもいい。「フーリエ制限理論」を
調べていくと、エリアス・スタインという超有名(らしい)数学者に
行き当たり、そのひとがこの分野の元祖っぽい。
邦訳されている『プリンストン解析教程』の原書を書いているひと。
理解を望むなら、そのあたりから調べていく必要がありそう。
388
(1): 09/25(木)18:27 ID:fkgyLEZd(1/3) AAS
>>380
MTconjectureの反例との関係でもあるのか?
389: 09/25(木)18:37 ID:ABGVOhvU(6/7) AAS
>>385
あ、
1>1/((b_{n+1}))^{b_n})>1/(b_{n+1}) であって b_{n+1}>(b_{n+1})^{b_n}
→ 1>1/((b_{n+1}))^{1/(b_n)})>1/(b_{n+1}) であって b_{n+1}>(b_{n+1})^{1/(b_n)}
か。ということは、何もいえないか
390: 09/25(木)18:43 ID:ABGVOhvU(7/7) AAS
>>388
MTconjectureの反例が何かは知らない
MTconjectureの反例を意識して書いた訳ではない
391: 09/25(木)18:57 ID:fkgyLEZd(2/3) AAS
誤りを認めたのなら問題ない
392: 09/25(木)20:08 ID:aZI0hRM2(4/4) AAS
ハンナ・カイロの動画が復活している。少し改訂されたよう。
動画リンク[YouTube]

393: 09/25(木)21:26 ID:fkgyLEZd(3/3) AAS
秋学期からメリーランドの院生
394: 09/26(金)04:13 ID:IfcJs9lk(1/2) AAS
物理なんかで発明がなされると言うとるやつがいるがアホじゃ
数式の追求のはてに、世界のどうぐが生まれたのや
395: 09/26(金)04:14 ID:IfcJs9lk(2/2) AAS
応用なんてもんは数字を使って初めて出来ることや
396: 09/26(金)04:39 ID:xHuchH0k(1) AAS
QRコードの発明者は
数学は詰碁みたいものだと言っていた
397: 09/27(土)04:28 ID:A2y2sJoc(1) AA×

398: 09/27(土)07:16 ID:8QK/7CNS(1) AAS
数学のノーベル賞「アーベル賞」賞金に非課税措置…文科省、数学分野の研究振興
399: 09/27(土)08:36 ID:Fhwm9wI2(1) AA×

400: 09/27(土)16:54 ID:0ayz0qNU(1) AAS
賞金稼ぎはいない
401
(3): 09/28(日)17:47 ID:fvkQNaSZ(1/13) AAS
π^π を代数的数と仮定する
π>1 から π^π は正の実数だから、π^π に対して
或る実代数的数aが存在して π^π=a であって a>π>1>0 であるから π=a^{1/π} である
π^π=a なることに注意して、確かに a>1 なる実数aに対して
定義される実変数xの指数関数 f(x)=a^x を考えれば a>π だから π=a^{1/π}>π^{1/π} である
πは無理数であって、πの
π=4Σ _{k=0,1,…,+∞}(((‐1)^k)/(2k+1))
 =4−Σ _{k=1,2,…,+∞}(2/((2k+1)(2k+3)))
なる有理級数による表示に注意すれば、πに対して、
或る M(π)>1 なる有理数 M(π) が存在して、
M(π) を M(π)=4 とすれば、無理数πに収束する各項が正なる
単調減少な有理数列 {b_n} ∀b_n<M(π) は存在する
402
(4): 09/28(日)17:49 ID:fvkQNaSZ(2/13) AAS
π<a<M(π)=4 なる有理数aを任意に取る
有理数列 {b_n} ∀b_n<M(π)=4 は無理数πに収束し
各項が正なる単調減少列であるから、π<a<M(π)=4 なる
有理数aに対して或る正の整数 N(a) が存在して、
有理数列 {b_n} ∀b_n<N(a) の第n項について n≧N(a) のとき π<b_n<a である
正の整数nを任意に取れば、nに対して定義される
実数列 {b_n} の第n項 b_n 、第n+1項 b_{n+1}は両方共に有理数だから、
nに対して b_{n+1} の b_n 乗列 c(n) が定義されて c(n)=(b_{n+1})^{b_n} とおくことが可能である
有理数列 {b_n} ∀b_n<M(π)=4 はπに収束し各項が正なる単調減少列だから、
実数列 {b_{n+1}^{b_n}} は π^π に収束する単調増加な実代数的数の列である
有理数aは π<a<M(π)=4 を満たすから、m≧N(a) なる正の整数mを任意に取れば、
有理数列 {b_n} ∀b_n<M(π) の第m項 b_m、第(m+1)項 b_{m+1} について
π<b_{m+1}<b_m<a であって、π>1 から確かに (b_{m+1})^{b_m}>1 である
よって、m≧N(a) のとき、1/a<1/(b_{m+1})<1/((b_{m+1})^{b_m})<1 であって、(b_{m+1})^{b_m}<a である
π<a<M(π)=4 なる有理数aは任意であるから、a→π とすれば、(b_{m+1})^{b_m}≦π である
403
(2): 09/28(日)17:50 ID:fvkQNaSZ(3/13) AAS
(>>401-402 の続き)
m→+∞ とすれば b_{m+1}→π かつ m→+∞ とすれば b_m→π であるから、
m≧N(a) なる正の整数mについて m→∞ とすれば (b_{m+1})^{b_m}→π^π であって π^π≦π を得る
しかし、π^π≦π なることは π^π>π なることに反し矛盾する
この矛盾は、π^π を代数的数と仮定したことから生じたから、
背理法が適用出来て、背理法を適用すれば、π^π は超越数である
404
(1): 09/28(日)17:57 ID:fvkQNaSZ(4/13) AA×

405
(1): 09/28(日)18:01 ID:fvkQNaSZ(5/13) AAS
同様に考えて一般化する
a、bを a>1、b>1 なる無理数であるとする
aに対して或る (M_1)(a)>a なる有理数 (M_1)(a) が存在して、
実数aに収束する単調減少な有理数列 {a_n} ∀a_n<(M_1)(a) が存在するとする
bに対して或る (M_2)(b)>b なる有理数 (M_2)(b) が存在して、
実数bに収束する単調減少な有理数列 {b_n} ∀b_n<(M_2)(b) が存在するとする
このとき、a^b、b^a は両方共に超越数である

故に、a=π、b=e とすれば、π>e>1 であって π^e は超越数である
406
(1): 09/28(日)18:10 ID:fvkQNaSZ(6/13) AAS
>>401の下から3行目について:
或る M(π)>1 なる有理数 M(π) が存在して、
→ 或る M(π)>π なる有理数 M(π) が存在して、
407: 09/28(日)18:33 ID:zxZXlCIa(1/10) AAS
>>401-406
ビューティフルマインドの逆、アグリーマインド
読むだけで脳みそ腐った気分にさせる文書をばら撒くのは犯罪行為
408: 09/28(日)18:33 ID:zxZXlCIa(2/10) AAS
自分の頭の悪さは自分の中に仕舞い込んでおけ!
409
(1): 09/28(日)18:39 ID:fvkQNaSZ(7/13) AAS
>>402の下から2行目:
よって、m≧N(a) のとき、1/a<1/(b_{m+1})<1/((b_{m+1})^{b_m})<1 であって、(b_{m+1})^{b_m}<a である
π<a<M(π)=4 なる有理数aは任意であるから、a→π とすれば、(b_{m+1})^{b_m}≦π である
→ よって、m≧N(a) のとき、1/a<1/(b_{m+1})<1/((b_{m+1})^{1/(b_m}))<1 であって、
(1/a)^{b_m}<(1/b_{m+1})^{b_m}<1 から (b_{m+1})^{b_m}<a^{b_m} である
π<a<M(π)=4 なる有理数aは任意であるから、
a→π とすれば、(b_{m+1})^{b_m}≦π^{b_m} であって、b_{m+1}≦π である
しかし、b_{m+1}≦π なることは π<b_{m+1} なることに反し、矛盾する
この矛盾は、π^π を代数的数と仮定したことから生じたから、
背理法が適用出来て、背理法を適用すれば、π^π は超越数である
410: 09/28(日)18:42 ID:fvkQNaSZ(8/13) AAS
>>409の訂正は
>>402の下から2行目以降>>403の訂正も含む
411
(1): 09/28(日)18:45 ID:zxZXlCIa(3/10) AAS
乙は数学板から去れ!!
412
(1): 09/28(日)18:48 ID:zxZXlCIa(4/10) AAS
自分が書いていることが正しいと思うなら、実名で責任を持って
どこかに発表しろ。
413: 09/28(日)18:51 ID:fvkQNaSZ(9/13) AAS
>>411
任意の正の実数εに対して或る正の整数 N(ε) が存在して…
というような書き方に則って、ごく普通の書き方をしただけだが
414
(1): 09/28(日)18:52 ID:zxZXlCIa(5/10) AAS
数学板住人はお前の腐った証明の添削屋じゃない。
「誤っている」という指摘がされなければ、正しいということにもならない。
415
(1): 09/28(日)18:57 ID:fvkQNaSZ(10/13) AAS
>>414
特に、他人からの添削は求めてない
1-
あと 85 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 1.383s*