高校数学の質問スレ(医者・東大卒専用) Part438 (991レス)
上
下
前
次
1-
新
844
: 05/24(土)08:18
ID:VetM3rz7(3/5)
AA×
[240|
320
|
480
|
600
|
100%
|
JPG
|
べ
|
レス栞
|
レス消
]
844: [sage] 2025/05/24(土) 08:18:19.92 ID:VetM3rz7 # Example data data <- data.frame( donation = c(0, 1000, 2000, 0, 3000, 0, 4000, 0, 5000, 0), score = c(90, 40, 35, 88, 30, 85, 25, 92, 20, 89), parent = c(0, 1, 1, 0, 1, 0, 1, 0, 1, 0), admission = as.factor(c(0, 1, 1, 0, 1, 0, 1, 0, 1, 0)) ) # New observation to predict newdata <- data.frame( donation = 2500, score = 40, parent = 1 ) # Fit model and obtain results set.seed(123) result <- fit_bayesian_logistic_jags( data = data, formula = admission ~ donation + score + parent, newdata = newdata ) # Extract variable names including intercept var_names <- colnames(model.matrix(admission ~ donation + score + parent, data)) # Extract beta coefficient summaries beta_stats <- result$summary$statistics[grep("^beta\\[", rownames(result$summary$statistics)), c("Mean", "SD")] beta_quants <- result$summary$quantiles[grep("^beta\\[", rownames(result$summary$quantiles)), c("2.5%", "97.5%")] # Rename row names using variable names rownames(beta_stats) <- var_names rownames(beta_quants) <- var_names # Display results print(beta_stats) print(beta_quants) cat("Predicted probability:", round(result$predicted_prob, 3), "\n") http://rio2016.5ch.net/test/read.cgi/math/1723152147/844
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 147 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
ぬこの手
ぬこTOP
0.056s