[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む83 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
247
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)22:02 ID:CB29Ozfy(10/13) AAS
>>246
つづき

(参考)
外部リンク:ja.wikipedia.org
コンパクト性定理(英: Compactness theorem)とは、一階述語論理の文の集合がモデルを持つこと(充足可能であること)と、その集合の任意の有限部分集合がモデルを持つことが同値であるという定理である。
応用例
コンパクト性定理はモデル理論を含む様々な分野において多くの応用を持つ。例として、以下の定理や命題がコンパクト性定理を用いて証明される。
・上方レーヴェンハイム-スコーレムの定理
・実数や自然数の超準モデルの存在
・ロビンソンの原理(一階述語論理の文 φ が任意の標数 0 の体で成り立つならば、ある自然数 k が存在して、φは標数が k 以上のすべての体で成り立つ)
・国の数が無限である場合の四色定理[3]
・任意の順序集合が全順序に拡大できること [3]
証明
コンパクト性定理は、ゲーデルの完全性定理から導くことができる。実際、一階述語論理の文の集合Sがモデルを持たないとすると、完全性定理からSは矛盾していることになるが、どんな証明も長さは有限なので、矛盾の証明に現れるSの文は高々有限個である。よって、Sのある有限部分から矛盾が導出されること、つまりSは充足不可能な部分集合を持つことがわかる。これの対偶がコンパクト性定理である [3]。
この他にも、超積を用いた証明も知られている。
その他の論理体系におけるコンパクト性
命題論理における同様の結果は、位相空間論のチコノフの定理をストーン空間に適用することで得られる[4]。 en:Lindstrom's theoremは、コンパクト性定理と(下方)レーヴェンハイム-スコーレムの定理が一階述語論理を特徴づける性質であることを示している。高階述語論理においてもある種のコンパクト性は保持されているが、コンパクト性定理自体は成り立たない。

つづく
248
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)22:02 ID:CB29Ozfy(11/13) AA×
>>247

外部リンク:www.practmath.com
外部リンク:ja.wikipedia.org
252
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)22:17 ID:CB29Ozfy(12/13) AAS
>>247 補足
>コンパクト性定理(英: Compactness theorem)とは、一階述語論理の文の集合がモデルを持つこと(充足可能であること)と、その集合の任意の有限部分集合がモデルを持つことが同値であるという定理である。

これ、初見では、意味を掴むのが難しいと思うので、外しているかも知れないが、解説してみると下記

1.可算無限個の箱の列で、”黒い”という状態を考えてみよう
2.可算無限個の箱の列が、全体として”黒い”ということは、任意の有限部分集合が”黒い”ことと定義する
3.普通に 「可算無限個の箱の列で、”黒い”」の否定は、「”どこかある部分が、”黒い”という状態ではない」となるだろう
4.これは、「任意の有限部分集合が”黒い”」という記述と符合していて、「任意の有限部分集合が”黒い”」が否定されるならば、「”どこかある部分が、”黒い”という状態ではない」となる
5.このように ”黒い”という状態を、”独立”に置き換えて貰えれば、コンパクト性定理のイメージが掴めるだろう
 (数学としての厳密な話は、>>247-248 なり、自分で検索するなり、あるいは専門書を買うかなど、専門の文献をご参照ください)

以上
346
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/12(水)20:46 ID:8axgfTbD(15/19) AAS
>>291 <再まとめ>

時枝さん、あの記事で4つくらい外している
1つは、確率変数の無限族の独立性
スレ20 2chスレ:math
”確率変数の無限族の独立性の微妙さ”などと時枝氏は言ってるが,これは全くの的外れ
 根拠は、>>247のコンパクト性定理 外部リンク:ja.wikipedia.org
”一階述語論理の文の集合がモデルを持つこと(充足可能であること)と、その集合の任意の有限部分集合がモデルを持つことが同値であるという定理である。”
>>262より 無限地図の4色定理が、コンパクト性定理で証明できるよ )

も1つは、非可測の話
時枝さん、ヴィタリの話をしているが
本当は、ジムの数学徒氏(>>6)が言った下記なんだ
スレ80 2chスレ:math
”確率論の公理の要請に反してしまう”ってこと
>>215より 細かいが、実際使う同値類は有限個に過ぎないので、選択公理のフルパワーは必要としないことも附言しておく)

3つには、>>22 >>211 に書いているが、下記の<時枝記事の可算無限数列の数当て定理 ”もどき”>不成立
補強で、>>321 ”注意 4.8. この定理が証明されれば,最初から limn→∞ an = a の定義を,aω =〜 a が全ての
無限大超自然数 ω に対して成立する事としてもよい事になる.これは「数列の ∞ 番目がい
つも同じ数」という意味であり,より直感的な収束の定義である.”

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.094s