[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む83 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
109(2): 2020/02/11(火)07:08 ID:yCL40qf3(1/44) AAS
>>108
そもそも現実世界には無限個の箱はないだろ
あったとしても、実数の無限列s、s’に対して
「sとs’がある箇所から先一致する」
と判定する手続きがないだろ
(これ言い出すとそもそも尻尾の同値類が
構成できないということになる)
で、上記の同値関係の判定ができたとしても
同値類の代表元r(s)を返す関数rが
具体的に構成できないだろ
(rは選択公理で存在が云えるだけのこと)
112(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)11:24 ID:6xY3HAGO(1/17) AAS
>>109
>そもそも現実世界には無限個の箱はないだろ
>あったとしても、実数の無限列s、s’に対して
>「sとs’がある箇所から先一致する」
>と判定する手続きがないだろ
>(これ言い出すとそもそも尻尾の同値類が
> 構成できないということになる)
どうもスレ主です。
この考察は、良い線行っていると思う
1.”実数の無限列s、s’に対して「sとs’がある箇所から先一致する」と判定する手続きがないだろ”は、人間の能力の限界として正しいが
これを認めると、コーシー列で定義された二つの異なる実数r,r' の区別が出来ないことになる
なので、数学は思念として可能としている
(所詮、人間は、無限を極限として、考えているにすぎないのかもしれないね)
2.同様に、物理的に無限個の箱はないとしても、数学界では思念上の形式的冪級数は存在し、形式的冪級数の係数を無限の箱と見れば良い
(形式的冪級数も、結局はn次多項式のn→∞の極限として、考えているにすぎないのかもしれないね。コーシー列に同じ)
(参考)
外部リンク:ja.wikipedia.org
形式的冪級数
定義
A を可換とは限らない環とする。A に係数をもち X を変数(不定元)とする(一変数)形式的冪級数 (formal power series) とは、各 ai (i = 0, 1, 2, …) を A の元として、
Σn=0〜∞ anX^n=a0+a1X+a2X^2+・・・
の形をしたものである。
114(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)11:32 ID:6xY3HAGO(2/17) AAS
>>109
>で、上記の同値関係の判定ができたとしても
>同値類の代表元r(s)を返す関数rが
>具体的に構成できないだろ
>(rは選択公理で存在が云えるだけのこと)
(>>22より)
可算無限数列 s=(s1,s2,・・sd,sd+1・・)に対し
s自身を代表としても良い
代表は、単に
一つの同値類から、一つを選ぶだけで良いので
あるいは、s自身がいやなら、先頭の数字を少し変化させて
s=(s'1,s'2,・・sd,sd+1・・)
とでもしておけば、良い
フルパワー選択公理は必要なのは、
非可算無限存在する同値類の各々全部から、代表を選ぶときですね
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.044s