[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
81(3): {} ◆y7fKJ8VsjM 2019/10/20(日)20:12 ID:n9MZ9SCV(11/14) AAS
スレ主はx→ ax+bという情報があっても
>>60の問題に答えられないw
答えは(243756)
要するに(Z/7Z)×の生成元を見つければいい
で、それは3
1→3→2(=9)→6→4(=18)→5(=12)→1(=15)
で、置換は1〜7の元だったから、1足せば(243756)
ついでにいうとa(x+b)とax+bは等しくないから非可換だね
1234567
↓+1
2345671
↓×3
4736251
1234567
↓×3
1473625
↓+1
2514736
83(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)21:42 ID:f+LcfVi/(25/25) AAS
>>81
ご苦労さん
非可換の計算が出来るんだね
えらいえらい
だけどさ
その x→ ax+b とか、フロベニウスとか
情報は、全部おれが提供してんだけど?
だから、あんたは、学部のガロア理論レベルまでなんだよね
ガロアの第一論文の最終定理(素数p次の代数方程式の可解条件)まで、到達できてなかったし、おそらくまだ到達できていなんじゃね?(^^;
91(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/21(月)07:53 ID:P3acsak1(2/9) AAS
>>81
>答えは(243756)
(もとの問題は>>60-61)
注文つけて悪いが
下記の 卒業研究”S_3, S_4, S_5 の部分群の分類”の
P14 §4.13 S5 の位数 20 の部分群
と対比すると
1)問題の位数42の群が構成できることが示されていない
2)位数42の群が構成されたとして、構成された群がFrobenius group "x→ ax+b, a≠ 0"(下記) となることが示されていない
(∵ n>=3の 置換群自身は、当然非可換ですよね。非可換例1つで何が言いたい? (Z/7Z)×とZ/7Zとで、部分群の位数42を示さなきゃ。そこが肝でしょ?(^^; )
手を動かせとか言っていたよね(>>49)(^^;
どぞ
(参考)
外部リンク[pdf]:www.isc.meiji.ac.jp
2008 年度卒業研究 S_3, S_4, S_5 の部分群の分類
(>>51)
外部リンク:en.wikipedia.org
Frobenius group
(抜粋)
Examples
・For every finite field Fq with q (> 2) elements, the group of invertible affine transformations x→ ax+b, a≠ 0 acting naturally on Fq is a Frobenius group.
131(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/22(火)08:17 ID:u309yKT7(7/15) AAS
>>81
>x→ ax+b
>要するに(Z/7Z)×の生成元を見つければいい
それ結構センスいいね
ちょっと違うけど、類似のことを考えていた
前スレのBrent Everitt先生 P77を見て、思いついたんだが
前スレの「分解体KはQ上6次拡大体なので、Gal(K/Q)=S_3.
ただし、1の原始3乗根ωを添加した体上では
Gal(K/Q(ω))=C_3と退化する。」
という議論を、Brent Everitt先生 P77を適用すれば
P77のx^5-2=0のクンマー拡大の群から、位数20=5x4の群が求まって、その群は1の原始n乗根ωが添加されない一般の位数20の群と同じ
それを、素数p次 x^p-2=0 で考えると、ガロアの第一論文の最終命題のFrobenius group(>>51)が得られるね
スレ77 2chスレ:math
875 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2019/10/16(水) 07:54:22.35 ID:OrOarbJT [5/12]
(抜粋)
(Brent Everitt先生、これお薦めです。カラーの絵が豊富で分り易い。(練習問題の解答が無くなっているね(^^ ))
外部リンク:arxiv.org
Galois Theory - a first course
Brent Everitt
(Submitted on 12 Apr 2018)
These notes are a self-contained introduction to Galois theory, designed for the student who has done a first course in abstract algebra.
外部リンク[pdf]:arxiv.org
スレ77 2chスレ:math
(抜粋)
938 名前:132人目の素数さん[sage] 投稿日:2019/10/17(木) 20:14:37.67 ID:rXxqe236 [7/8]
aを3乗数でない整数とすると、x^3-aはQ上既約。
分解体KはQ上6次拡大体なので、Gal(K/Q)=S_3.
ただし、1の原始3乗根ωを添加した体上では
Gal(K/Q(ω))=C_3と退化する。これが一般3次方程式との違い。
つまり、一般3次方程式は最初に2次方程式を解いたあとωを添加して3次クンマー拡大でべき根表示が得られる
(分解体Kにωが含まれることを必ずしも意味しない)わけですが
最初の2次拡大とQ(ω)/Qが一致する特殊ケースが2項方程式(及びそれと同値な方程式)なわけです。
わたしが指摘したのは、この類似が5次方程式でも成立してるよねってことです。
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.038s