[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
649(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/09(土)06:49 ID:aIAMZK1h(4/39) AAS
>>607
>モノドロミーで、GL(n, C)が出てくるよ(^^
(参考)
外部リンク:ja.wikipedia.org
モノドロミー
脚注
2 ^ V.P. Kostov (2004), “The Deligne?Simpson problem ? a survey”, J. Algebra 281 (1): 83?108, doi:10.1016/j.jalgebra.2004.07.013, MR2091962 and the references therein.
V.P. Kostov / Journal of Algebra 281 (2004) 83?108
The Deligne?Simpson problem?a survey
Vladimir Petrov Kostov
Universite de Nice?Sophia Antipolis, Laboratoire de Mathematiques,
Parc Valrose, 06108 Nice cedex 2, France
Received 18 September 2002
Available online 3 September 2004
(抜粋)
1. Introduction
1.1. Regular and Fuchsian linear systems on Riemann’s sphere
The problem which is the subject of this paper admits a purely algebraic formulation.
Yet its importance lies in the analytic theory of systems of linear differential equations, this
is why we start by considering the linear system of ordinary differential equations defined
on Riemann’s sphere:
dX/dt = A(t)X. (1)
Here the n × n-matrix A is meromorphic on CP1, with poles at a1, . . . ,ap+1; the dependent
variables X form an n×n-matrix.Without loss of generality we assume that∞is not
among the poles aj and not a pole of the 1-form A(t) dt . In modern literature (see, e.g.,
[18]) the terminology of meromorphic connections and sections is often preferred to the
one of meromorphic linear systems and their solutions and there is a 1?1-correspondence
between the two languages.
つづく
650: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/09(土)06:50 ID:aIAMZK1h(5/39) AAS
>>649
つづき
This transformation preserves regularity but, in general, it does not preserve being Fuchsian.
The only invariant under the group of linear transformations (5) is the monodromy
group of the system.
Set Σ := CP1\{a1, . . . ,ap+1}. To define the monodromy group one has to fix a base
point a0 ∈ Σ and a matrix B ∈ GL(n,C). The monodromy group is defined only up to
conjugacy due to the freedom to choose a0 and B.
外部リンク:en.wikipedia.org
Notes
2 V. P. Kostov (2004), "The Deligne?Simpson problem ? a survey", J. Algebra, 281 (1): 83?108, arXiv:math/0206298, doi:10.1016/j.jalgebra.2004.07.013, MR 2091962 and the references therein.
(上記と5章が微妙に違うな)
外部リンク:arxiv.org
The Deligne-Simpson problem -- a survey
Vladimir Petrov Kostov
(Submitted on 27 Jun 2002)
The Deligne-Simpson problem (DSP) (resp. the weak DSP) is formulated like this:
{\em give necessary and sufficient conditions for the choice of the conjugacy classes Cj⊂GL(n,C) or cj⊂gl(n,C) so that there exist irreducible (resp. with trivial centralizer) (p+1)-tuples of matrices Mj∈Cj or Aj∈cj satisfying the equality M1...Mp+1=I or A1+...+Ap+1=0}.
The matrices Mj and Aj are interpreted as monodromy operators of regular linear systems and as matrices-residua of Fuchsian ones on Riemann's sphere.
The present paper offers a survey of the results known up to now concerning the DSP.
外部リンク[pdf]:arxiv.org
以上
651: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/09(土)06:54 ID:aIAMZK1h(6/39) AAS
>>649
URL追加
外部リンク:www.sciencedirect.com
Journal of Algebra
Volume 281, Issue 1, 1 November 2004, Pages 83-108
Journal of Algebra
The Deligne?Simpson problem?a survey
To the memory of my mother
Author links open overlay panelVladimir PetrovKostov
Show more
外部リンク:doi.org rights and content
Under an Elsevier user license
外部リンク[pdf]:www.sciencedirect.com
Download full text in PDF
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.039s