[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
462(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/04(月)17:47 ID:Qu1TcOyQ(3/28) AAS
>>421
>PSL(2,16):2 が、なにか、ガロア逆問題から見て、特別な存在なのでしょうね
ちょっと検索でヒットしたので貼る(^^
この ”Multi-parameter polynomials”が面白いと思った
例えば、”5. The group PGL2(7)”は、ガロア逆問題は解けているみたい
外部リンク:www.mathematik.uni-kl.de
Technische Universitat Kaiserslautern
外部リンク[html]:www.mathematik.uni-kl.de
Prof. Dr. Gunter Malle Veroffentlichungen
外部リンク:link.springer.com
136 (mit B. H. Matzat): Inverse Galois Theory. 2nd Edition. Springer Verlag (2018), xvii + 533 pp., (MR3822366).
外部リンク[pdf]:www.mathematik.uni-kl.de
55 Multi-parameter polynomials with given Galois group. J. Symbolic Comput. 30 (2000), 717-731, (MR 2002a:12007).
GUNTER MALLE FB Mathematik, Universit¨at Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
(抜粋)
We present a collection of multi-parameter polynomials for several mostly non-solvable
permutation groups of small degree and describe their construction. As an application we
are able to obtain totally real number fields with these Galois groups over the rationals,
for example for the two small Mathieu groups M11 and M12.
つづく
463(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/04(月)17:47 ID:Qu1TcOyQ(4/28) AAS
>>462
つづき
1. Introduction
The non-abelian finite simple groups and their automorphism groups play a crucial role
in an inductive approach to the inverse problem of Galois theory. The rigidity method
(see for example Malle and Matzat (1999)) has proved very efficient for deducing the
existence of Galois extensions with such groups, as well as for the construction of polynomials generating such extensions. Nevertheless, the effective construction requires the
solution of a non-linear system of equations, a problem which is known to be very hard
from a complexity point of view. Thus, in practice, the computation of polynomials is
restricted to rather small degree, to the case of stem fields of genus zero and also to few
(mostly three) ramification points. For several applications, for example for the solution
of embedding problems, it is sometimes necessary to find Galois extensions of the rationals with given group and with complex conjugation lying in a prescribed conjugacy
class. But it is well known (see for example Malle and Matzat (1999), Ex. I.10.2) that
three point ramified Galois extensions almost never have totally real specializations, for
example.
In this paper we give 2-, 3- and 4-parameter polynomials for certain (mostly nonsolvable) groups which, from a certain point of view, correspond to Galois extensions
ramified in at least four points, with the property that these admit (infinitely many) totally real, Galois group preserving specializations. For example we obtain a two-parameter
polynomial for the sporadic simple Mathieu group M12 over Q. Suitable specializations
then yield totally real number fields with groups M11 and M12.
Acknowledgement: I would like to thank Peter M¨uller for very useful conversations on
the topic of this paper.
つづく
465(1): 2019/11/04(月)18:02 ID:lsGvCqzx(6/24) AAS
>>460
>小学生に教えているんだってな
いいえ、どこからそんな電波を受信したの?w
>>461
「情報科学が専門」というのは事実
昔のことですがね
>>462-464
また、わかりもしない英文をコピペですか?
いったい、あなたは何がしたいの
もう、あなたの実力は露見しちゃってるから
マウンティングは無理ですよ
466(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/04(月)18:03 ID:Qu1TcOyQ(6/28) AAS
>>462 追加
”PARAMETRIC GALOIS EXTENSIONS”
外部リンク[pdf]:arxiv.org
PARAMETRIC GALOIS EXTENSIONS
FRANC, OIS LEGRAND
Abstract. Given a field k and a finite group H, an H-parametric
extension over k is a finite Galois extension of k(T ) of Galois group
containing H which is regular over k and has all the Galois extensions of k of group H among its specializations. We are mainly interested in producing non H-parametric extensions, which relates
to classical questions in inverse Galois theory like the BeckmannBlack problem and the existence of one parameter generic polynomials. We develop a general approach started in a preceding paper
and provide new non parametricity criteria and new examples.
1. Presentation
The Inverse Galois Problem asks whether, for a given finite group H,
there exists at least one Galois extension of Q of group H. A classical
way to obtain such an extension consists in producing a Galois extension E/Q(T) with the same group which is regular over Q 1
: from the Hilbert irreducibility theorem, E/Q(T) has at least one specialization
of group H (in fact infinitely many if H is not trivial).
In this paper we are interested in “parametric Galois extensions”,
i.e. in finite Galois extensions E/Q(T) which are regular over Q - from
now on, say for short that E/Q(T) is a “Q-regular Galois extension”
- and which have all the Galois extensions of Q of group H among
their specializations. More precisely, given a field k and a finite group
H, we say that a k-regular finite Galois extension E/k(T) of group G
containing H (with possibly H 6= G) is H-parametric over k if any
Galois extension of k of group H ocurs as a specialization of E/k(T)
(definition 2.2). The special case H = G is of particular interest.
つづく
471(1): 2019/11/04(月)18:07 ID:lsGvCqzx(7/24) AAS
>>462
>・・・が面白いと思った
全然計算しないで何が面白いか分かるわけないがねw
検索は全然頭使わないから無意味
486(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/04(月)18:42 ID:Qu1TcOyQ(15/28) AAS
>>484
手計算で多項式を求めたら、意味が分かる!?
という思想では、>>462 の論文
外部リンク[pdf]:www.mathematik.uni-kl.de
55 Multi-parameter polynomials with given Galois group. J. Symbolic Comput. 30 (2000), 717-731, (MR 2002a:12007).
GUNTER MALLE FB Mathematik, Universit¨at Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
は、読めないよねw
いまどき(現代数学)の群論の論文って
そういうの多くね?w (^^
494(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/11/04(月)19:56 ID:Qu1TcOyQ(16/28) AAS
>>462 追加
これ、結構 Inverse Galois Problem でよく纏まっているね
外部リンク[pdf]:arxiv.org
Inverse Galois Problem and Significant Methods
Fariba Ranjbar*
, Saeed Ranjbar
* School of Mathematics, Statistics and Computer Science, University of Tehran,
Tehran, Iran.
(抜粋)
ABSTRACT. The inverse problem of Galois Theory was developed in the early
1800’s as an approach to understand polynomials and their roots. The inverse
Galois problem states whether any finite group can be realized as a Galois
group over ? (field of rational numbers). There has been considerable progress
in this as yet unsolved problem. Here, we shall discuss some of the most
significant results on this problem. This paper also presents a nice variety of
significant methods in connection with the problem such as the Hilbert
irreducibility theorem, Noether’s problem, and rigidity method and so on.
I. Introduction
Is every finite group realizable as the Galois group of a Galois extension of ??
(A) General existence problem. Determine whether G occurs as a Galois group over
K. In other words, determine whether there exists a Galois extension M/K such that
the Galois group Gal (M/K) is isomorphic to G. We call such a Galois extension M a
G-extension over K.
(B) Actual construction. If G is realisable as a Galois group over K, construct
explicit polynomials over K having G as a Galois group. More generally, construct a
family of polynomials over a K having G as Galois group.
Is every finite group realizable as the Galois group of a Galois extension of Q?
II. Milestones in Inverse Galois Theory
For the 26 sporadic simple groups, all but possibly one, namely, the Mathieu group
M23, have been shown to occur as Galois groups over Q.
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.059s