[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
195
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/25(金)18:52 ID:xcx18NtP(6/7) AAS
>>194
つづき

歴史
詳細は「類体論の歴史(英語版)」を参照
類体論の起源はガウスによって与えられた平方剰余の相互律にある。
それが一般化されるまでには長きに亙る歴史的な取り組み、たとえば二次形式とその「種の理論」、クンマー・クロネッカー・ヘンゼルなどのイデアルおよび完備化に関する業績、円分体およびクンマー拡大の理論などがあった。

最初の二つの類体論は、非常にはっきりした円分類体論と虚数乗法類体論である。
これらは付加的な構造(有理数体の場合には 1 の冪根、有理数体の虚二次拡大体の場合には楕円曲線が虚数乗法を持つことと位数有限であること)が利用できる。
随分後になって、志村の理論は代数的数体のクラスに対する非常に明示的な新たな類体論を与えた。これらは基礎体の具体的な構造を非常に陽に用いる理論であって、勝手な数体に対してもうまくいくように拡張することはできない。
正標数 p の体に関しては、河田と佐武がヴィット双対性を用いて相互律準同型の p-成分の非常に平易な記述を得ている。

しかし、一般類体論はこういったものとは異なる概念を用い、その構成法が任意の大域体に対してうまく機能するようにしなければならない。

ヒルベルトの有名な問題が更なる発展の刺激となって、高木貞治、フィリップ・フルトヴェングラー、エミール・アルティン、ヘルムート・ハッセほか多数による種々の相互律が導かれることとなった。

つづく
196: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/25(金)18:53 ID:xcx18NtP(7/7) AAS
>>195

つづき

著しく重要な高木の存在定理が1920年に知られ、全ての主要な結果は1930年ごろまでには出そろっていた。
証明されるべき古典的な予想の最後の一つは単項化定理(英語版)であった。類体論の最初の証明には、頑強な解析学的手法が用いられた。
1930年代以降は、無限次元拡大とそのガロワ群に関するヴォルフガンク・クルルの理論が有効であることが次第に認められていく。
この理論はポントリャーギン双対性と結びついて、中心的な結果であるアルティンの相互律のより抽象的な定式化が分かり易くなった。
重要な段階は、1930年代にクロード・シュヴァレーによってイデールが導入されたことである。
イデールをイデアル類の代わりに用いることで、大域体のアーベル拡大を記述する構造は本質的に明確化および単純化され、中心的な結果のほとんどが1940年までに証明された。

この結果の後には、群コホモロジーの言葉を使った定式化がなされ、それが何世代かの数論学者が類体論を学ぶ際の標準となったが、コホモロジーを用いる方法の難点の一つは、それがあまり具体的でないことである。
ベルナルド・ドワーク、ジョン・テイト、ミッシェル・ハゼウィンケルによる局所理論への貢献、およびユルゲン・ノイキルヒによる局所および大域理論の再解釈の結果として、あるいは多くの数学者による明示的な相互公式に関する業績と関連して、1990年代にはコホモロジーを用いない非常に明確な類体論の表現が確立された。
このあたりの詳細は、例えばノイキルヒの本を参照せよ。
(引用終り)
以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.043s