[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
192
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/25(金)18:51 ID:xcx18NtP(3/7) AAS
>>191

つづき

目次
1 現代的な定式化
2 素イデアル
3 類体論の一般化
4 歴史
5 脚注
6 参考文献
7 関連項目
現代的な定式化
現代的な言葉で言えば、基礎体 K の最大アーベル拡大 A は存在して、その拡大次数は K 上無限大となり得るから、その時 A に対応するガロワ群 G は副有限群となり、従ってコンパクト位相群かつまたアーベル群になる。
類体論の中心定な目的は、この群 G を基礎体 K の言葉で記述することである。特に、K の有限次アーベル拡大と K に対する適当な(有限な剰余体を持つ局所体の場合の乗法群や大域体の場合のイデール類群のような)対象におけるノルム群との間の一対一対応を確立し、それらのノルム群を(例えば、指数有限な開部分群といったように)直截的に記述することである。
そのような部分群に対応する有限次アーベル拡大を類体と呼び、これが理論の名称の由来となっている。

類体論の基本的な結果は「最大アーベル拡大のガロワ群 G は、基礎体 K のイデール類群 CK の(基礎体 K の特定の構造に関係して CK に入る自然な位相に関する)副有限完備化に自然同型である」ことを主張する。
同じことだが、K の任意の有限次ガロワ拡大 L に対し、この拡大のガロワ群の最大アーベル商(アーベル化)と、K のイデール類群を L のイデール類群のノルム写像による像で割ったものとの間に、同型

Gal(L / K)ab → CK / NL/K CL
が存在する[1]。

つづく
193: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/25(金)18:51 ID:xcx18NtP(4/7) AAS
>>192

つづき

幾つかの小さい体、例えば有理数体 Q やその虚二次拡大体については、もっとたくさんの情報が得られる詳細な理論が存在する。
例えば、Q のアーベル化絶対ガロワ群 G は、全ての素数に亙って取った p-進整数環の単元群の無限直積(に自然同型)であり、対応する Q の最大アーベル拡大は 1 の冪根全てによって生成された体となる。
このことは、もとはレオポルト・クロネッカーの予想であったクロネッカー?ヴェーバーの定理として知られる。
この場合の、類体論の相互律同型(あるいはアルティンの相互律写像)も同定理に従って具体的に書くことができる。
1 の全ての冪根からなる群を
μ_∞(⊃C^X)
と書くことにする(円周群C^×のねじれ部分群)と、アルティンの相互律写像はそれが数論的正規化されているならば
^Z^X→G_Q^ab=Gal(Q(μ_∞)/Q);x→(ζ→ζ^x)
によって、あるいはそれが幾何学的正規化されているならば
^Z^X→G_Q^ab=Gal(Q(μ_∞)/Q);x→(ζ→ζ^-x)^
によって与えられる。
しかし、このような小さな代数体に対する詳細理論の主要な構成法は一般の代数体の場合にまで拡張することはできないし、一般類体論で用いられるのはもっと違った概念的原理である。

相互律準同型を構成する標準的な方法は、まず大域体の完備化の乗法群からその最大アーベル拡大のガロワ群への局所相互律同型を構成し(ここまでは局所類体論の範疇でできる)、それからそれらすべての局所相互律写像の積を大域体のイデール群上で定義するとき、その積が大域体の乗法群の像の上で自明となることを示すことで行われる。
最後のところのこの性質を大域相互律 (global reciprocity law) と言い、これはガウスの二次の相互律の広汎な一般化になっている。

相互律準同型を構成するのに類構造(英語版)を用いる方法もある。

コホモロジー群(特にブラウアー群)を用いる方法や、コホモロジーを用いずに非常に明示的で応用が利く方法などもある。

つづく
194
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/25(金)18:52 ID:xcx18NtP(5/7) AAS
>>192
つづき

素イデアル
G の抽象的な記述だけではなくて、そのアーベル拡大においてどのように素イデアルが分解するかを理解することが数論の目的にとってより本質的である。
この記述はフロベニウス元を用いて、二次体における素数の因数分解の様子を完全に与える二次の相互律を非常に広範に一般化するものである。
つまり、類体論の内容には、(三次の相互律といったような)より高次の「冪剰余の相互律」についての理論が含まれるのである。

類体論の一般化
数論における一つの自然な展開は、大域体の(アーベルとは限らない)一般のガロワ拡大に対する情報を与える非可換類体論の構成と理解を行うことである。
ラングランズ対応が非可換類体論と見做されることが多く、そして実際にラングランズ対応が確立されたときには大域体の非可換ガロワ拡大に関する非常に豊かな理論を含むことになるのだが、しかしラングランズ対応はアーベル拡大の場合の類体論が持っていた有限次ガロワ拡大についての数論的情報のほとんどを含んでいないのである。
しかもラングランズ対応は類体論の存在定理に対応するものも含んでいない、即ち、ラングランズ対応における類体の概念は存在しないのである。
局所および大域の非可換類体論はいくつか存在し、それらはラングランズ対応の観点に対する別の選択肢を与えてくれる。

もうひとつ、数論幾何における自然な展開は、高次局所体および高次大域体のアーベル拡大を構成及び理解することである。
後者の高次大域体は、整数環上の有限型スキームの函数体およびその適当な局所化や完備化として生じる。
「高次局所および大域類体論」は代数的 K-理論や、一次元類体論で用いられる K1 の代わりに適当なミルナー K-群を用いる。高次局所および大域類体論は、A. パーシン、加藤和也、イヴァン・フェセンコ、スペンサー・ブロック、斎藤秀司らの数学者が展開した。
代数的 K-理論を用いずに高次大域類体論を展開しようとする試みもある (G. Wiesend) が、このやり方は高次局所類体論を含むものではなく、また局所理論と大域理論との間に互換性がない。

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.052s