[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
171
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/24(木)07:56 ID:G70Rid0Q(4/5) AAS
>>170
つづき

対応の明示的な記述
有限拡大に対し、対応は次のように明示的に述べることができる。
・Gal(E/F) の任意の部分群 H に対し、対応する体は普通 E^H と書かれ、これは全ての H の自己同型により固定される E の元の集合である。
・E/F の任意の中間体 K に対し、対応する部分群は、単に Aut(E/K) であり、これは全ての K の元を固定する Gal(E/F) に属する自己同型の集合である。
例えば、一番上の体 E は Gal(E/F) の自明な部分群に対応し、基礎体 F は Gal(E/F) の全体に対応する。

対応の性質
対応は次のような有益な性質を持っている。
・包含関係を逆にする(inclusion-reversing)[2]。部分群の包含関係 H1 ⊆ H2 が成り立つことと体の包含関係 E^H1 ⊇ E^H2 が成り立つこととは同値。
・拡大次数は包含関係を逆にするという性質と矛盾しない形で群の位数と関係する。具体的には H が Gal(E/F) の部分群であれば |H| = [E : E^H] であり |Gal(E/F)/H| = [E^H : F] である[3]。
・体 E^H は F の正規拡大(分離拡大の部分拡大は分離的だから、これはガロア拡大というのと同じ)であることと、H が Gal(E/F) の正規部分群であることとは同値である。
 このとき Gal(E/F) の元の E^H への制限は、Gal(E^H/F) と商群 Gal(E/F)/H の間の群同型を引き起こす。

外部リンク:ja.wikipedia.org
ガロア理論
(抜粋)
ガロア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。
1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロアは当時、まだ確立されていなかった群や体の考えを方程式の研究に用いていた。

ガロア理論によれば、“ガロア拡大”と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。

一般に、体の拡大において、ある体上で既約な多項式の分解体となるという性質を正規性といい、中間体の正規性はガロア群の部分群が正規部分群に対応している。

つづく
172: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/24(木)07:56 ID:G70Rid0Q(5/5) AAS
>>171
つづき

例えば、L の正規部分拡大のうちで K の特定の元のべき根によって生成されるもの M の対称性を表す群
Gal (M/K)= Gal (L/K)/ Gal (L/M)
は巡回群になる。

L が K のべき根拡大になっているかどうかは群 Gal(L/K) が可解群になっているかどうか。
このようにして分解体の自己同型を調べることで方程式の可解性について考察することができる。

より発展的な定式化
抽象代数学においては、方程式とその分解体という具体的な対象を一旦放棄して、抽象的に定義された体の代数的拡大を取り扱うことになる。
上と同様に拡大体の自己同型と部分群の間の対応がうまくいくように、分離性と正規性とよばれる二つの条件が要求される。
この二つを満たすような拡大は ガロア拡大 (Galois extension) と呼ばれる。

ガロア理論の基本定理
詳細は「ガロア理論の基本定理」を参照
体 L を体 K の有限次ガロア拡大とする。L と K の中間体 M と Gal(L/K) の部分群 H について次の式が成立つ。

M=L^Gal(L/M)},H= Gal(L/L^H).
ただし、Gal(L/M) は拡大 L/M のガロア群であり、LH は L の元のうちで H の下で不変になっているもののなす L の部分拡大を指す。

したがって、L の中間体 M とガロア群 Gal(L/K) の部分群 H の間の対応
φ:M→H= Gal(L/M),ψ:M=L^H←H
は互いに逆で、これらは全単射になることがわかる。
また、この対応はあきらかに包含関係を逆にしている。
つまり、M1 ⊃ M2 ならば φ(M1) ⊂ φ(M2), G1 ⊃ G2 なら ψ(G1) ⊂ ψ(G2) となる。
(引用終り)
以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.032s