[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
17(4): 2019/10/19(土)12:58 ID:S/ONPb/G(2/2) AAS
2つの異なるF、F_1,F_2 があるときそれらの合成体の部分体としてさらに別の(F_1,F_2と異なる)Fが存在することも分かる。
実際の例は
外部リンク[pdf]:repository.hyogo-u.ac.jp
PDF 可解な5次方程式について - 兵庫教育大学 大迎規宏 著
を参照のこと。5乗根の中に√5が含まれてる例が多いのが気になっていたが
だからと言って中間体がQ(ζ)(及びその部分体)とは限らないんだな。
23(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/19(土)20:26 ID:ti2BclkQ(6/18) AAS
>>16-17
ID:S/ONPb/Gさん、どうも。スレ主です。
>Q上(Q(ζ)上としてもほぼ同じ)の可解5次方程式f(x)=0 は2項5次方程式に帰着するか?
ここ、下記 松田 修 のべき根拡大 定理 61 があるのです
つまり、体 K が 1 の原始 n 乗根 ζが添加されているとして、
べき根拡大 ←→ 巡回群
が成立つ
これは、小島寛之のガロア本(下記)の
P208 べき根拡大の定理1と(=簡単に言えば、べき根拡大ならガロア群は巡回群)
P222 べき根拡大の定理1の逆(=簡単に言えば、ガロア群が巡回群ならべき根拡大)
と同じです
これ、方程式のガロア理論では、多分頻出です
(参考)
外部リンク:www.tsuyama-ct.ac.jp
Matsuda’s Web Page 松田 修
外部リンク[html]:www.tsuyama-ct.ac.jp
TSUYAMA E-MATH BOOKS
外部リンク[pdf]:www.tsuyama-ct.ac.jp
PDF ガロア理論を理解しよう Osamu MATSUDA 津山高専 2018/11/16
(抜粋)
P76
10.2 べき根拡大
定理 61
体 K が 1 の原始 n 乗根 ζ (ζ≠ 1 (1 <= r <= n-1), ζn = 1)を含むとする.
(1) L が K の n 次巡回拡大であれば,L = K(α), Irr(α, K) = X^n - a となる α が存在する.
(2) もし L = K(α), α^n = a ∈ K であれば,L は K の巡回拡大である.
証明
略
外部リンク:gihyo.jp
知の扉
【完全版】天才ガロアの発想力
―対称性と群が明かす方程式の秘密―
著者
小島寛之 著
発売日
2019年7月6日
(抜粋)
2010 年に刊行した『天才ガロアの発想力』を大幅加筆しました。
これまでにないガロアの定理の完全解説本です。
第7章 5次以上の方程式が解けないからくり
ガロアの基本定理1の証明
解けない方程式の「からくり」はこうだ(それなり版証明)
P208 べき根拡大の定理1(=簡単に言えば、べき根拡大ならガロア群は巡回群)
解ける方程式の「からくり」はこうだ
P222 べき根拡大の定理1の逆(=簡単に言えば、ガロア群が巡回群ならべき根拡大)
25(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/19(土)20:57 ID:ti2BclkQ(8/18) AAS
>>23-24 追加
(引用開始)
松田 修 のべき根拡大 定理 61 があるのです
つまり、体 K が 1 の原始 n 乗根 ζが添加されているとして、
べき根拡大 ←→ 巡回群
が成立つ
(引用終り)
なので
1)方程式のガロア理論的の教育というか学習としては、「1 の原始 n 乗根 ζが添加されているとして」考えると
”べき根拡大 ←→ 巡回群”が成立つので、理論的にはすっきりしています
2)>>24 の 元吉 文男さんなどが研究されているのは(>>17の兵庫教育大学 大迎規宏 著)もそうかも知れないが
数式処理等にのせるには、「1 の原始 n 乗根 ζが添加されている」という仮定は、かえってコンピュータの処理に乗せにくい部分があるのでしょう
数体はQ(実際には整数ベース)として、数式処理の乗せる方が、素直なような気がします
(数式処理ソフトは、あまり使っていないので、ここは外しているかも知れませんが)
なので、上記1)と2)の立場をうまく使い分けるのが良いと思います
26: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/19(土)20:59 ID:ti2BclkQ(9/18) AAS
>>25 タイポ訂正
方程式のガロア理論的の教育というか
↓
方程式のガロア理論の教育というか
(>>17の兵庫教育大学 大迎規宏 著)もそうかも知れないが
↓
(>>17の兵庫教育大学 大迎規宏 著もそうかも知れないが)
分かると思うが、念のため(^^;
33: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/19(土)23:33 ID:ti2BclkQ(16/18) AAS
>>32 追加
>中心化群と正規化群
これ、>>17の大迎規宏で”正規化群”が出てくるので、調べた
外部リンク[pdf]:repository.hyogo-u.ac.jp
PDF 可解な5次方程式について - 兵庫教育大学 大迎規宏 著
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.039s