[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 http://rio2016.5ch.net/test/read.cgi/math/1571400076/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
462: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/04(月) 17:47:37.21 ID:Qu1TcOyQ >>421 >PSL(2,16):2 が、なにか、ガロア逆問題から見て、特別な存在なのでしょうね ちょっと検索でヒットしたので貼る(^^ この ”Multi-parameter polynomials”が面白いと思った 例えば、”5. The group PGL2(7)”は、ガロア逆問題は解けているみたい https://www.mathematik.uni-kl.de/agag/personen/leitung/ Technische Universitat Kaiserslautern https://www.mathematik.uni-kl.de/~malle/de/publications.html Prof. Dr. Gunter Malle Veroffentlichungen https://link.springer.com/book/10.1007/978-3-662-55420-3 136 (mit B. H. Matzat): Inverse Galois Theory. 2nd Edition. Springer Verlag (2018), xvii + 533 pp., (MR3822366). https://www.mathematik.uni-kl.de/~malle/download/pargal.pdf 55 Multi-parameter polynomials with given Galois group. J. Symbolic Comput. 30 (2000), 717-731, (MR 2002a:12007). GUNTER MALLE FB Mathematik, Universit¨at Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany (抜粋) We present a collection of multi-parameter polynomials for several mostly non-solvable permutation groups of small degree and describe their construction. As an application we are able to obtain totally real number fields with these Galois groups over the rationals, for example for the two small Mathieu groups M11 and M12. つづく http://rio2016.5ch.net/test/read.cgi/math/1571400076/462
463: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/04(月) 17:47:58.44 ID:Qu1TcOyQ >>462 つづき 1. Introduction The non-abelian finite simple groups and their automorphism groups play a crucial role in an inductive approach to the inverse problem of Galois theory. The rigidity method (see for example Malle and Matzat (1999)) has proved very efficient for deducing the existence of Galois extensions with such groups, as well as for the construction of polynomials generating such extensions. Nevertheless, the effective construction requires the solution of a non-linear system of equations, a problem which is known to be very hard from a complexity point of view. Thus, in practice, the computation of polynomials is restricted to rather small degree, to the case of stem fields of genus zero and also to few (mostly three) ramification points. For several applications, for example for the solution of embedding problems, it is sometimes necessary to find Galois extensions of the rationals with given group and with complex conjugation lying in a prescribed conjugacy class. But it is well known (see for example Malle and Matzat (1999), Ex. I.10.2) that three point ramified Galois extensions almost never have totally real specializations, for example. In this paper we give 2-, 3- and 4-parameter polynomials for certain (mostly nonsolvable) groups which, from a certain point of view, correspond to Galois extensions ramified in at least four points, with the property that these admit (infinitely many) totally real, Galois group preserving specializations. For example we obtain a two-parameter polynomial for the sporadic simple Mathieu group M12 over Q. Suitable specializations then yield totally real number fields with groups M11 and M12. Acknowledgement: I would like to thank Peter M¨uller for very useful conversations on the topic of this paper. つづく http://rio2016.5ch.net/test/read.cgi/math/1571400076/463
465: 132人目の素数さん [sage] 2019/11/04(月) 18:02:48.27 ID:lsGvCqzx >>460 >小学生に教えているんだってな いいえ、どこからそんな電波を受信したの?w >>461 「情報科学が専門」というのは事実 昔のことですがね >>462-464 また、わかりもしない英文をコピペですか? いったい、あなたは何がしたいの もう、あなたの実力は露見しちゃってるから マウンティングは無理ですよ http://rio2016.5ch.net/test/read.cgi/math/1571400076/465
466: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/04(月) 18:03:34.00 ID:Qu1TcOyQ >>462 追加 ”PARAMETRIC GALOIS EXTENSIONS” https://arxiv.org/pdf/1310.6682.pdf PARAMETRIC GALOIS EXTENSIONS FRANC, OIS LEGRAND Abstract. Given a field k and a finite group H, an H-parametric extension over k is a finite Galois extension of k(T ) of Galois group containing H which is regular over k and has all the Galois extensions of k of group H among its specializations. We are mainly interested in producing non H-parametric extensions, which relates to classical questions in inverse Galois theory like the BeckmannBlack problem and the existence of one parameter generic polynomials. We develop a general approach started in a preceding paper and provide new non parametricity criteria and new examples. 1. Presentation The Inverse Galois Problem asks whether, for a given finite group H, there exists at least one Galois extension of Q of group H. A classical way to obtain such an extension consists in producing a Galois extension E/Q(T) with the same group which is regular over Q 1 : from the Hilbert irreducibility theorem, E/Q(T) has at least one specialization of group H (in fact infinitely many if H is not trivial). In this paper we are interested in “parametric Galois extensions”, i.e. in finite Galois extensions E/Q(T) which are regular over Q - from now on, say for short that E/Q(T) is a “Q-regular Galois extension” - and which have all the Galois extensions of Q of group H among their specializations. More precisely, given a field k and a finite group H, we say that a k-regular finite Galois extension E/k(T) of group G containing H (with possibly H 6= G) is H-parametric over k if any Galois extension of k of group H ocurs as a specialization of E/k(T) (definition 2.2). The special case H = G is of particular interest. つづく http://rio2016.5ch.net/test/read.cgi/math/1571400076/466
471: 132人目の素数さん [sage] 2019/11/04(月) 18:07:30.91 ID:lsGvCqzx >>462 >・・・が面白いと思った 全然計算しないで何が面白いか分かるわけないがねw 検索は全然頭使わないから無意味 http://rio2016.5ch.net/test/read.cgi/math/1571400076/471
486: 現代数学の系譜 雑談 古典ガロア理論も読む =歹.a0E5TtKE [] 2019/11/04(月) 18:42:00.81 ID:Qu1TcOyQ >>484 手計算で多項式を求めたら、意味が分かる!? という思想では、>>462 の論文 https://www.mathematik.uni-kl.de/~malle/download/pargal.pdf 55 Multi-parameter polynomials with given Galois group. J. Symbolic Comput. 30 (2000), 717-731, (MR 2002a:12007). GUNTER MALLE FB Mathematik, Universit¨at Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany は、読めないよねw いまどき(現代数学)の群論の論文って そういうの多くね?w (^^ http://rio2016.5ch.net/test/read.cgi/math/1571400076/486
494: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/04(月) 19:56:43.30 ID:Qu1TcOyQ >>462 追加 これ、結構 Inverse Galois Problem でよく纏まっているね https://arxiv.org/ftp/arxiv/papers/1512/1512.08708.pdf Inverse Galois Problem and Significant Methods Fariba Ranjbar* , Saeed Ranjbar * School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran. (抜粋) ABSTRACT. The inverse problem of Galois Theory was developed in the early 1800’s as an approach to understand polynomials and their roots. The inverse Galois problem states whether any finite group can be realized as a Galois group over ? (field of rational numbers). There has been considerable progress in this as yet unsolved problem. Here, we shall discuss some of the most significant results on this problem. This paper also presents a nice variety of significant methods in connection with the problem such as the Hilbert irreducibility theorem, Noether’s problem, and rigidity method and so on. I. Introduction Is every finite group realizable as the Galois group of a Galois extension of ?? (A) General existence problem. Determine whether G occurs as a Galois group over K. In other words, determine whether there exists a Galois extension M/K such that the Galois group Gal (M/K) is isomorphic to G. We call such a Galois extension M a G-extension over K. (B) Actual construction. If G is realisable as a Galois group over K, construct explicit polynomials over K having G as a Galois group. More generally, construct a family of polynomials over a K having G as Galois group. Is every finite group realizable as the Galois group of a Galois extension of Q? II. Milestones in Inverse Galois Theory For the 26 sporadic simple groups, all but possibly one, namely, the Mathieu group M23, have been shown to occur as Galois groups over Q. http://rio2016.5ch.net/test/read.cgi/math/1571400076/494
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.040s