[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 http://rio2016.5ch.net/test/read.cgi/math/1571400076/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
194: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/25(金) 18:52:13.24 ID:xcx18NtP >>192 つづき 素イデアル G の抽象的な記述だけではなくて、そのアーベル拡大においてどのように素イデアルが分解するかを理解することが数論の目的にとってより本質的である。 この記述はフロベニウス元を用いて、二次体における素数の因数分解の様子を完全に与える二次の相互律を非常に広範に一般化するものである。 つまり、類体論の内容には、(三次の相互律といったような)より高次の「冪剰余の相互律」についての理論が含まれるのである。 類体論の一般化 数論における一つの自然な展開は、大域体の(アーベルとは限らない)一般のガロワ拡大に対する情報を与える非可換類体論の構成と理解を行うことである。 ラングランズ対応が非可換類体論と見做されることが多く、そして実際にラングランズ対応が確立されたときには大域体の非可換ガロワ拡大に関する非常に豊かな理論を含むことになるのだが、しかしラングランズ対応はアーベル拡大の場合の類体論が持っていた有限次ガロワ拡大についての数論的情報のほとんどを含んでいないのである。 しかもラングランズ対応は類体論の存在定理に対応するものも含んでいない、即ち、ラングランズ対応における類体の概念は存在しないのである。 局所および大域の非可換類体論はいくつか存在し、それらはラングランズ対応の観点に対する別の選択肢を与えてくれる。 もうひとつ、数論幾何における自然な展開は、高次局所体および高次大域体のアーベル拡大を構成及び理解することである。 後者の高次大域体は、整数環上の有限型スキームの函数体およびその適当な局所化や完備化として生じる。 「高次局所および大域類体論」は代数的 K-理論や、一次元類体論で用いられる K1 の代わりに適当なミルナー K-群を用いる。高次局所および大域類体論は、A. パーシン、加藤和也、イヴァン・フェセンコ、スペンサー・ブロック、斎藤秀司らの数学者が展開した。 代数的 K-理論を用いずに高次大域類体論を展開しようとする試みもある (G. Wiesend) が、このやり方は高次局所類体論を含むものではなく、また局所理論と大域理論との間に互換性がない。 つづく http://rio2016.5ch.net/test/read.cgi/math/1571400076/194
195: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/25(金) 18:52:42.76 ID:xcx18NtP >>194 つづき 歴史 詳細は「類体論の歴史(英語版)」を参照 類体論の起源はガウスによって与えられた平方剰余の相互律にある。 それが一般化されるまでには長きに亙る歴史的な取り組み、たとえば二次形式とその「種の理論」、クンマー・クロネッカー・ヘンゼルなどのイデアルおよび完備化に関する業績、円分体およびクンマー拡大の理論などがあった。 最初の二つの類体論は、非常にはっきりした円分類体論と虚数乗法類体論である。 これらは付加的な構造(有理数体の場合には 1 の冪根、有理数体の虚二次拡大体の場合には楕円曲線が虚数乗法を持つことと位数有限であること)が利用できる。 随分後になって、志村の理論は代数的数体のクラスに対する非常に明示的な新たな類体論を与えた。これらは基礎体の具体的な構造を非常に陽に用いる理論であって、勝手な数体に対してもうまくいくように拡張することはできない。 正標数 p の体に関しては、河田と佐武がヴィット双対性を用いて相互律準同型の p-成分の非常に平易な記述を得ている。 しかし、一般類体論はこういったものとは異なる概念を用い、その構成法が任意の大域体に対してうまく機能するようにしなければならない。 ヒルベルトの有名な問題が更なる発展の刺激となって、高木貞治、フィリップ・フルトヴェングラー、エミール・アルティン、ヘルムート・ハッセほか多数による種々の相互律が導かれることとなった。 つづく http://rio2016.5ch.net/test/read.cgi/math/1571400076/195
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.045s