[過去ログ] 分からない問題はここに書いてね426 [無断転載禁止]©2ch.net (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
26: 2017/05/04(木)17:17 ID:tkL7uDX5(1) AAS
lim[n→∞](1+1/n)^nが収束することを示せという問題があります。
解説を読めば書いてあることは理解できるのですが、どうすれば証明をするための
発想ができますか?

例えばXn=(1+1/n)^nが単調増加であることを示すために二項定理を用いて

Xn=1+1+(1-1/n)/2!+(1-1/n)*(1-2/n)/3!+・・・+(1-1/n)*(1-2/n)*・・・*(1-(n-1)/n)/n!

Xn+1=1+1+{1-1/(n+1)}/2!+{1-1/(n+1)}*{1-2/(n+1)}/3!+・・・+{1-1/(n+1)}*{1-2/(n+1)}*・・・*{1-(n-1)/(n+1)}/n!

展開をし、各項を比較してXn+1>Xnであると導いてます。
省6
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.363s*