レス書き込み
スレへ戻る
写
レス栞
レス消
ガロア第一論文と乗数イデアル他関連資料スレ13
PC,スマホ,PHSは
ULA
べっかんこ
公式(スマホ)
公式(PC)
で書き込んでください。
名前
メール
引用切替:
レスアンカーのみ
>>191 > >>182 補足 > > ・Hilbert spaceの Hilbert dimension は、下記 > "As a consequence of Zorn's lemma, every Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same cardinality, called the Hilbert dimension of the space.[94]" > (which may be a finite integer, or a countable or uncountable cardinal number). > ・”The Hilbert dimension is not greater than the Hamel dimension (the usual dimension of a vector space).” > ”As a consequence of Parseval's identity,[95] 略 ” > ・なお、>>146-147 "Proof that every vector space has a basis"では、有限和は 陽には使われていない > なので ”The set X is nonempty since the empty set is an independent subset of V, and it is partially ordered by inclusion, which is denoted, as usual, by ⊆. > Let Y be a subset of X that is totally ordered by ⊆, and let LY be the union of all the elements of Y (which are themselves certain subsets of V). > Since (Y, ⊆) is totally ordered, every finite subset of LY is a subset of an element of Y, which is a linearly independent subset of V, and hence LY is linearly independent. Thus LY is an element of X. Therefore, LY is an upper bound for Y in (X, ⊆): it is an element of X, that contains every element of Y. > As X is nonempty, and every totally ordered subset of (X, ⊆) has an upper bound in X, Zorn's lemma asserts that X has a maximal element. In other words, there exists some element Lmax of X satisfying the condition that whenever Lmax ⊆ L for some element L of X, then L = Lmax.” > とやっているので、⊆ による順序は Hilbert space でも そのまま使える > あとは、直交基底と 位相的な収束の話を 色付けすれば、よさそうだ > > (参考) > https://en.wikipedia.org/wiki/Hilbert_space > Hilbert space > > Hilbert dimension > As a consequence of Zorn's lemma, every Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same cardinality, called the Hilbert dimension of the space.[94] For instance, since l^2(B) has an orthonormal basis indexed by B, its Hilbert dimension is the cardinality of B (which may be a finite integer, or a countable or uncountable cardinal number). > > The Hilbert dimension is not greater than the Hamel dimension (the usual dimension of a vector space). > > As a consequence of Parseval's identity,[95] if {ek}k ∈ B is an orthonormal basis of H, then the map Φ : H → l^2(B) defined by Φ(x) = ⟨x, ek⟩k∈B is an isometric isomorphism of Hilbert spaces: it is a bijective linear mapping such that > ⟨Φ(x),Φ(y)⟩l^2(B)=⟨x,y⟩H > for all x, y ∈ H. The cardinal number of B is the Hilbert dimension of H. Thus every Hilbert space is isometrically isomorphic to a sequence space l^2(B) for some set B.
ローカルルール
SETTING.TXT
他の携帯ブラウザのレス書き込みフォームはこちら。
書き込み設定
で書き込みサイトの設定ができます。
・
ULA
・
べっかんこ(身代わりの術)
・
べっかんこ(通常)
・
公式(スマホ)
・
公式(PC)[PC,スマホ,PHS可]
書き込み設定(板別)
で板別の名前とメールを設定できます。
メモ帳
(0/65535文字)
上
下
板
覧
索
設
栞
歴
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.022s