純粋・応用数学・数学隣接分野(含むガロア理論)21 (277レス)
上下前次1-新
抽出解除 レス栞
271(1): 09/02(火)22:43 ID:vgyzZwMc(1) AAS
初等幾何の枠組みに座標を入れて解析幾何・代数幾何の中に埋め込んで、
そのように拡大された体系の中でも解法が無いことを示せれば、
拡大される前の体系の中でも解法が無いという理屈になるのだろうな。
なぜならば、拡大前の体系の中で解法があったとすれば、
拡大後の体系の中からみても解法があるはずだから。
しかし拡大前の体系の中で解法がなかったとしても、
拡大後の体系の中には解法があるのかもしれない、そうして
その解法は拡大前の体系の中では実施できないものだと。
273: 09/03(水)11:11 ID:hNzKNOFY(2/3) AAS
>>271
1)初等幾何:下記のギリシアの3大作図問題ですね
2)”拡大された体系の中でも解法が”は、下記の「射影幾何の考えかた逆井卓也」ご参照
射影幾何、射影座標で考えることで ユークリッド幾何学内で考えるよりスッキリ
3)同様に、常微分方程式あるいは偏微分方程式の弱解の話
解の範囲を広げて ”はじめに弱解の存在を示し、その後にその解が実際に十分滑らかであることを示す、という方法がしばしば有用となる”
他に、代数方程式の解で たとえ実係数であっても その根の範囲を複素数まで広げる方が
スッキリ扱えるがごとし
(参考)
外部リンク:www.nli-research.co.jp
省19
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.021s