フェルマーの最終定理の証明 (763レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
1(6): 与作 04/22(火)18:27 ID:ZBPrKUfk(1) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、成立つので、k=1以外でも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
387: 07/17(木)15:28 ID:88t231TB(13/15) AAS
τ<0⇒f(τ)=0 ∴f(τ)g(t-τ)=0
t-τ>1⇒g(t-τ)=0 ∴f(τ)g(t-τ)=0
t-τ?1 ⇒ f(τ)=e^(-τ), g(t-τ)=t-τ
f*g(t)=∫_(t-1)^t??e^(-τ) (t-τ)dτ?=∫_(t-1)^t??(-e^(-τ) )^' (t-τ)dτ?
=-[?( @e^(-τ)@ )(t-τ)]_(t-1)^t-∫_(t-1)^t??e^(-τ) dτ?
=-(0-e^(1-t) )+[?( @e^(-τ)@ )]_(t-1)^t=e^(1-t)+e^(-t)-e^(1-t)=e^(-t)
436: 07/21(月)11:08 ID:W1xjBo9V(8/14) AAS
任意の自然数nに対しn<P?2nを満たす素数Pが存在する。(#15)
nより大きく2 n以下の素数積Qについて
Q? √(6&2^(2x^2+15)/x^(4x+30) ) (x=√2n, n?5) ・・・・・(#12)
が成り立つ。したがって、もし Q>1ならば(#15) が成り立つ。
x=e^logx 2=e^log2
なので
2^(2x^2+15) = ?(e^log2)?^(2x^2+15)=e^((2x^2+15)log2)
x^(4x+30)=?(e^logx)?^(4x+30)=e^((4x+30)logx)
ここで
(2x^2+15)log2 >(4x+30)logx (x?12) ・・・・・(#14)
省15
677: 08/20(水)10:23 ID:kS5YreVJ(5/9) AAS
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
=?[n=0→∞]((1+i)/2)^(n+1) (z-i)^n
※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2
?A) |z-i|>√2の場合
省12
700: 08/22(金)11:01 ID:aTp7UHTZ(5/9) AAS
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
=納n=0→∞]((1+i)/2)^(n+1) (z-i)^n
※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2
?A) |z-i|>√2の場合
省11
728: 08/27(水)14:42 ID:SaRzx/tC(4/5) AAS
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
=納n=0→∞]((1+i)/2)^(n+1) (z-i)^n
※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2
?A) |z-i|>√2の場合
省11
747: 08/29(金)23:16 ID:4OcLYpFC(4/7) AAS
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
=納n=0→∞]((1+i)/2)^(n+1) (z-i)^n
※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2
?A) |z-i|>√2の場合
省11
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.024s