フェルマーの最終定理の証明 (781レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
1: 与作 [] 2025/04/22(火) 18:27:47.38 ID:ZBPrKUfk n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)はk=1のとき、成立つので、k=1以外でも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/1
387: 132人目の素数さん [] 2025/07/17(木) 15:28:49.17 ID:88t231TB τ<0⇒f(τ)=0 ∴f(τ)g(t-τ)=0 t-τ>1⇒g(t-τ)=0 ∴f(τ)g(t-τ)=0 t-τ?1 ⇒ f(τ)=e^(-τ), g(t-τ)=t-τ f*g(t)=∫_(t-1)^t??e^(-τ) (t-τ)dτ?=∫_(t-1)^t??(-e^(-τ) )^' (t-τ)dτ? =-[?( @e^(-τ)@ )(t-τ)]_(t-1)^t-∫_(t-1)^t??e^(-τ) dτ? =-(0-e^(1-t) )+[?( @e^(-τ)@ )]_(t-1)^t=e^(1-t)+e^(-t)-e^(1-t)=e^(-t) http://rio2016.5ch.net/test/read.cgi/math/1745314067/387
436: 132人目の素数さん [] 2025/07/21(月) 11:08:32.42 ID:W1xjBo9V 任意の自然数nに対しn<P?2nを満たす素数Pが存在する。(#15) nより大きく2 n以下の素数積Qについて Q? √(6&2^(2x^2+15)/x^(4x+30) ) (x=√2n, n?5) ・・・・・(#12) が成り立つ。したがって、もし Q>1ならば(#15) が成り立つ。 x=e^logx 2=e^log2 なので 2^(2x^2+15) = ?(e^log2)?^(2x^2+15)=e^((2x^2+15)log2) x^(4x+30)=?(e^logx)?^(4x+30)=e^((4x+30)logx) ここで (2x^2+15)log2 >(4x+30)logx (x?12) ・・・・・(#14) を使うと 2^(2x^2+15)/x^(4x+30) =e^((2x^2+15)log2)/e^((4x+30)logx) =e^((2x^2+15)log2-(4x+30)logx)>e^0 √(6&2^(2x^2+15)/x^(4x+30) )>√(e^0 )=1 したがって x=√2n?12 、つまりn?72 のとき(#15)は成り立つ。 37?n?71⇒n?73?2n 19?n?36⇒n?37?2n 10?n?18⇒n?19?2n 6?n?9⇒n?11?2n n=4,5⇒n?7?2n n=3⇒3?6?6 n=2⇒2?3?4 n=1⇒1?2?2 したがって 1?n?71 のとき(#15)は成り立つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/436
677: 132人目の素数さん [] 2025/08/20(水) 10:23:17.30 ID:kS5YreVJ f(z)=1/(1-z) z=i で展開 ?@) |z-i|<√2 (1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i) 1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i)) =1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?) =(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +? =((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +? =?[n=0→∞]((1+i)/2)^(n+1) (z-i)^n ※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2 ?A) |z-i|>√2の場合 |z-i|/√2=|(z-i)/(1-i)|>1 すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。 1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i)) =-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?) =-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?) =-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?) =-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?) =-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?) =-?[n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n) ※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2 (1-i)^n=2^n/(1+i)^n ()^? http://rio2016.5ch.net/test/read.cgi/math/1745314067/677
700: 132人目の素数さん [] 2025/08/22(金) 11:01:45.93 ID:aTp7UHTZ f(z)=1/(1-z) z=i で展開 ?@) |z-i|<√2 (1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i) 1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i)) =1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?) =(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +? =((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +? =納n=0→∞]((1+i)/2)^(n+1) (z-i)^n ※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2 ?A) |z-i|>√2の場合 |z-i|/√2=|(z-i)/(1-i)|>1 すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。 1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i)) =-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?) =-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?) =-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?) =-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?) =-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?) =-納n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n) ※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2 (1-i)^n=2^n/(1+i)^n http://rio2016.5ch.net/test/read.cgi/math/1745314067/700
728: 132人目の素数さん [] 2025/08/27(水) 14:42:08.06 ID:SaRzx/tC f(z)=1/(1-z) z=i で展開 ?@) |z-i|<√2 (1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i) 1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i)) =1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?) =(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +? =((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +? =納n=0→∞]((1+i)/2)^(n+1) (z-i)^n ※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2 ?A) |z-i|>√2の場合 |z-i|/√2=|(z-i)/(1-i)|>1 すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。 1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i)) =-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?) =-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?) =-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?) =-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?) =-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?) =-納n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n) ※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2 (1-i)^n=2^n/(1+i)^n http://rio2016.5ch.net/test/read.cgi/math/1745314067/728
747: 132人目の素数さん [] 2025/08/29(金) 23:16:11.86 ID:4OcLYpFC f(z)=1/(1-z) z=i で展開 ?@) |z-i|<√2 (1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i) 1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i)) =1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?) =(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +? =((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +? =納n=0→∞]((1+i)/2)^(n+1) (z-i)^n ※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2 ?A) |z-i|>√2の場合 |z-i|/√2=|(z-i)/(1-i)|>1 すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。 1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i)) =-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?) =-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?) =-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?) =-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?) =-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?) =-納n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n) ※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2 (1-i)^n=2^n/(1+i)^n http://rio2016.5ch.net/test/read.cgi/math/1745314067/747
764: 132人目の素数さん [] 2025/08/31(日) 10:48:50.00 ID:Bq8GdLuV f(z)=1/(1-z) z=i で展開 ?@) |z-i|<√2 (1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i) 1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i)) =1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?) =(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +? =((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +? =納n=0→∞]((1+i)/2)^(n+1) (z-i)^n ※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2 ?A) |z-i|>√2の場合 |z-i|/√2=|(z-i)/(1-i)|>1 すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。 1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i)) =-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?) =-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?) =-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?) =-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?) =-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?) =-納n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n) ※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2 (1-i)^n=2^n/(1+i)^n http://rio2016.5ch.net/test/read.cgi/math/1745314067/764
781: 132人目の素数さん [] 2025/09/01(月) 09:21:54.34 ID:b44elzXy f(τ)=0 ∴f(τ)g(t-τ)=0 g(t-τ)=0 ∴f(τ)g(t-τ)=0 f*g(t)=∫_(-∞)^∞??f(τ)g(t-τ)dτ? =∫_(-∞)^0??f(τ)g(t-τ)dτ?+∫_0^∞??f(τ)g(t-τ)dτ?=0 τ<0⇒f(τ)=0 ∴f(τ)g(t-τ)=0 0?τ?t⇒t-τ?0 ∴f(τ)=e^(-τ), g(t-τ)=t-τ τ>t⇒t-τ<0 ∴g(t-τ)=0, f(τ)g(t-τ)=0 f*g(t)=∫_0^t??e^(-τ) (t-τ)dτ?=∫_0^t??(-e^(-τ) )^' (t-τ)dτ? =-[?( @e^(-τ)@ )(t-τ)]_0^t-∫_0^t??-e^(-τ) (-1)dτ? =t-∫_0^t??e^(-τ) dτ? =t+[?( @e^(-τ)@ )]_0^t=t+e^(-t)-1 τ<0⇒f(τ)=0 ∴f(τ)g(t-τ)=0 t-τ>1⇒g(t-τ)=0 ∴f(τ)g(t-τ)=0 t-τ?1 ⇒ f(τ)=e^(-τ), g(t-τ)=t-τ f*g(t)=∫_(t-1)^t??e^(-τ) (t-τ)dτ?=∫_(t-1)^t??(-e^(-τ) )^' (t-τ)dτ? =-[?( @e^(-τ)@ )(t-τ)]_(t-1)^t-∫_(t-1)^t??e^(-τ) dτ? =-(0-e^(1-t) )+[?( @e^(-τ)@ )]_(t-1)^t=e^(1-t)+e^(-t)-e^(1-t)=e^(-t) http://rio2016.5ch.net/test/read.cgi/math/1745314067/781
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s