[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
91(2): 2019/12/22(日)17:46 ID:L44cnxPR(1/2) AAS
>>89
> 【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
> 【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
> したがって、x^2×1=(z+y)(z-y)…(1)となる。
> (1)の左辺の右側と、右辺の右側は等しいので、
いいえ。等しいというなら、それをきちんと証明せよ。
95(1): 日高 2019/12/22(日)18:00 ID:JmVFhdX8(17/51) AAS
>91
>【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
> 【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
> したがって、x^2×1=(z+y)(z-y)…(1)となる。
> (1)の左辺の右側と、右辺の右側は等しいので、
いいえ。等しいというなら、それをきちんと証明せよ。
z^2-y^2を因数分解すると、(z+y)(z-y)となります。
z^2-y^2=x^2なので、x^2×1=(z+y)(z-y)…(1)となります。
AB=BCならば、B=Cのとき、A=Bとなります。
証明。B=Cなので、AC=BCとなります。両辺は等しいので、A=Bとなります。
98: 2019/12/22(日)18:26 ID:L44cnxPR(2/2) AAS
>>95
> >91
> >【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
> > 【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
> > したがって、x^2×1=(z+y)(z-y)…(1)となる。
> > (1)の左辺の右側と、右辺の右側は等しいので、
> いいえ。等しいというなら、それをきちんと証明せよ。
>
> z^2-y^2を因数分解すると、(z+y)(z-y)となります。
> z^2-y^2=x^2なので、x^2×1=(z+y)(z-y)…(1)となります。
省4
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.030s