[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
893
(3): 2020/01/14(火)21:57 ID:Yxuo3KSa(1/3) AAS
>>889 日高
> >885
> >> z^pとz^p*1と(z^p/2)*2と(z^p/3)*3は、同じなので、
> z^p*1のみを検討すればよいです。
>
> その理由を証明の中に書いてください。
>
> z^p=z^p*1=(z^p/2)*2=(z^p/3)*3だからです。

「証明の中に書いてください」と書きました。
これを含めた証明を、それだけを読んでわかるように書いてください。
900: 2020/01/14(火)22:42 ID:dFJcvDXF(1) AAS
>>893もスルーせずにちゃんと書いてな
901
(2): 日高 2020/01/15(水)08:52 ID:16OwUp8O(1/27) AAS
>893
>「証明の中に書いてください」と書きました。
これを含めた証明を、それだけを読んでわかるように書いてください。

【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
省1
930
(2): 2020/01/15(水)20:17 ID:GFvFBWqQ(3/10) AAS
>>901 日高
> >893
> >「証明の中に書いてください」と書きました。
> これを含めた証明を、それだけを読んでわかるように書いてください。
>
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい

「z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^p」って同じ式が三つ書いてあるだけ。
説明になっていません。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.034s