[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
882(3): 日高 2020/01/14(火)10:51 ID:8O8IjhZw(3/8) AAS
>881
>ということは、3 の時も 4 の時も同じこと z^p までやるのですか?
元の証明にはないですね。
z^pとz^p*1と(z^p/2)*2と(z^p/3)*3は、同じなので、
z^p*1のみを検討すればよいです。
885(3): 2020/01/14(火)13:34 ID:OO5Lvkus(1) AAS
>>882
> z^pとz^p*1と(z^p/2)*2と(z^p/3)*3は、同じなので、
z^p*1のみを検討すればよいです。
その理由を証明の中に書いてください。
886: 2020/01/14(火)19:22 ID:3IqQFT1y(1) AAS
>>882
> >881
> >ということは、3 の時も 4 の時も同じこと z^p までやるのですか?
> 元の証明にはないですね。
>
> z^pとz^p*1と(z^p/2)*2と(z^p/3)*3は、同じなので、
> z^p*1のみを検討すればよいです。
という妄想。根拠なし。
888(4): 2020/01/14(火)21:16 ID:A6QNiooL(2/3) AAS
>>882
> z^pとz^p*1と(z^p/2)*2と(z^p/3)*3は、同じなので、
> z^p*1のみを検討すればよいです。
証明の手順を見てみると、
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)
を満たす有理数を探しています。
となると、
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)
と
2={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p/2=(x+y)
省1
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s