[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
702(2): 日高 2019/12/31(火)10:28 ID:sLGxNEAB(1/4) AAS
>697
>【日高氏風・定理】pが奇素数のとき、x^p+y^p=z^2は、自然数解を持たない。
【日高氏風・証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
したがって、z^2×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(1)となる。
(左辺の右側)=(右辺の右側)となるので、1={x^(p-1)-x^(p-2)y+…+y^(p-1)}…(2)とおく。
(2)の有理数解は、x=1、y=1のみである。z^2=(x+y)にx=1、y=1を代入する。
z^2=1+1=2となる。z^2=2を満たす有理数zはない。
∴pが奇素数のとき、x^p+y^p=z^2は、自然数解を持たない。
3^2*1=(x+y)(x^2-xy+y^2)にx=1、y=1を代入すると、
3^2=(x+y)式は成り立ちません。
省3
703: 2019/12/31(火)11:16 ID:U3adLXgL(1) AAS
>>702
結論の誤りではなく証明の誤りを指摘してください。
704(1): 日高 2019/12/31(火)18:34 ID:sLGxNEAB(2/4) AAS
>702
>結論の誤りではなく証明の誤りを指摘してください。
3^2*1=(x+y)(x^2-xy+y^2)にx=1、y=2を代入すると、
3^2*1=(1+2)(1^2-1*2+2^2)となる。
(左辺の右側)=(右辺の右側)となるので、
3^2*1=(1+2)3(1^2-1*2+2^2)(1/3)
3^2*1=(1+2)3(3)(1/3)
3^2*1=(1+2)3*1
z^2=9となります。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.038s