[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
424
(3): 日高 2019/12/27(金)15:32 ID:40kRiIy3(18/19) AAS
【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
したがって、x^2=(z+y)(z-y)…(1)となる。(z-y)=1…(2)とおく。
(2)をx^2=(z+y)に代入すると、x^2=2y+1…(3)となる。
(3)のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
425
(1): 2019/12/27(金)16:46 ID:pwwq6VLo(1) AAS
>>424
>x^2=2y+1…(3)となる。
> (3)のxに任意の有理数を代入すると、yは、有理数となる。
> ∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。

x が偶数なら駄目って指摘なんだから、
3 以上の任意の奇数ってすればいいのに
どうして変な方に行っちゃうかなあ。

x=±1 や負の有理数の時に自然数解に持ってけませんがな。
434: 2019/12/27(金)20:35 ID:lU/pIHWl(1/4) AAS
>>424
何故(z-1)を1と出来るのか意味わからん
454
(1): 2019/12/28(土)12:05 ID:tWXWoxT0(1/3) AAS
>>452
> 1^2+0^2=1^2となります。整数解となります。

んで、どうやってここから自然数解に持ってくの?

>424 の証明では、
(3)のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。

だから整数解になることに意味はないよね。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s