[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
4(7): 2019/12/20(金)16:40 ID:/CC2NhNl(1) AAS
また日高語録が生まれたね
前スレ>>993
1=7となるので、〜
6(3): 日高 2019/12/20(金)16:56 ID:1mOJhAe/(4/11) AAS
>4
>前スレ>>993
>1=7となるので、〜
間違いを、ご指摘いただけないでしょうか。
291(2): 2019/12/24(火)17:29 ID:2wc4yS4K(11/14) AAS
>>290
>4*2=(2x+5y)(x+3y)、8*1=(2x+5y)(x+3y)とすると、二元連立方程式なので、x,yを特定することが出来ます。
>x,yは、異なりますが、4*2と8*1は、同じ整数です。
詰まり、『1×z^pだけでなく、z×z^(p-1)等のパターンも考慮せねば、全ての解は導けない』ということだろう?
貴方も申している通り、4×2と8×1で解が異なる。
無論、2×4と1×8も必要だ。
301(1): 日高 2019/12/24(火)21:09 ID:wiVzZJzo(38/45) AAS
>291
>4*2=(2x+5y)(x+3y)、8*1=(2x+5y)(x+3y)とすると、二元連立方程式なので、x,yを特定することが出来ます。
>x,yは、異なりますが、4*2と8*1は、同じ整数です。
詰まり、『1×z^pだけでなく、z×z^(p-1)等のパターンも考慮せねば、全ての解は導けない』ということだろう?
貴方も申している通り、4×2と8×1で解が異なる。
>無論、2×4と1×8も必要だ。
(0)8=(2x+5y)(x+3y)
(1)1*8=(2x+5y)(x+3y)、x=-37、y=15(二元連立方程式の解)
(2)2*4=(2x+5y)(x+3y)、x=-14、y=6(二元連立方程式の解)
(3)4*2=(2x+5y)(x+3y)、x=2、y=0(二元連立方程式の解)
省2
551(1): 日高 2019/12/29(日)21:09 ID:0OrGG5Rh(39/62) AAS
>547
>4^2+3^2=5^2のとき1=z-yとはならんだろ。
x^2=2y+1に、x=2を代入すると、(4/2)^2+(3/2)^2=(5/2)^2となります。
552(2): 2019/12/29(日)21:14 ID:BhvL9ciO(9/22) AAS
>>551 日高
> >547
> >4^2+3^2=5^2のとき1=z-yとはならんだろ。
>
> x^2=2y+1に、x=2を代入すると、(4/2)^2+(3/2)^2=(5/2)^2となります。
この場合x=4だろうが。
563(1): 2019/12/29(日)21:30 ID:BhvL9ciO(12/22) AAS
>>561 日高
> >552
> >この場合x=4だろうが。
>
> どういう意味でしょうか?
> > >4^2+3^2=5^2のとき1=z-yとはならんだろ。
だからx=4だろうが。
575: 日高 2019/12/29(日)21:49 ID:0OrGG5Rh(48/62) AAS
>563
>> >4^2+3^2=5^2のとき1=z-yとはならんだろ。
だからx=4だろうが。
x^2=2y+1にx=2を代入すると、(4/2)^2+(3/2)^2=(5/2)^2となります。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s