[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
293(2): 2019/12/24(火)20:00 ID:1JxoQQV4(3/5) AAS
>>288
z^p*1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}として、zを自然数とすると、
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}、z^p=z^pの2元連立方程式を解けばよいことになります。
別途証明が必要です。
連立方程式を解けばよいことになることを証明して下さい。
294(1): 2019/12/24(火)20:02 ID:1JxoQQV4(4/5) AAS
>>293
ちょいと言葉が足りなかったかな。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}
とおいて連立方程式を解けばよいことを証明して下さい。
303: 日高 2019/12/24(火)21:16 ID:wiVzZJzo(40/45) AAS
>293
>z^p*1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}として、zを自然数とすると、
>1={x^(p-1)-x^(p-2)y+…+y^(p-1)}、z^p=z^pの2元連立方程式を解けばよいことになります。
別途証明が必要です。
連立方程式を解けばよいことになることを証明して下さい。
(0)8=(2x+5y)(x+3y)
(1)1*8=(2x+5y)(x+3y)、x=-37、y=15(二元連立方程式の解)
(2)2*4=(2x+5y)(x+3y)、x=-14、y=6(二元連立方程式の解)
(3)4*2=(2x+5y)(x+3y)、x=2、y=0(二元連立方程式の解)
(4)8*1=(2x+5y)(x+3y)、x=19、y=-6(二元連立方程式の解)
省1
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 1.086s*