[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
288
(2): 日高 2019/12/24(火)16:56 ID:wiVzZJzo(33/45) AAS
>284
>A=BCならば、C=1、B=Aとなる。
B=(x+y)、C={x^(p-1)-x^(p-2)y+…+y^(p-1)}、A=z^2

とおっしゃってます。
与式=1 以外のときも証明を、という問いに対し、
>A=BC ならば、 C=1 とすれば B=A という回答は無意味です。

フェルマーの最終定理の簡単な証明を簡単に説明すると、
z^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}を解けば良いことになります。
zを自然数としても、x,yは、求まりません。
そこで、
省3
289
(2): 2019/12/24(火)17:13 ID:Sv73zD9J(2/2) AAS
>>288

> >284
> >A=BCならば、C=1、B=Aとなる。
> B=(x+y)、C={x^(p-1)-x^(p-2)y+…+y^(p-1)}、A=z^2
>
> とおっしゃってます。
> 与式=1 以外のときも証明を、という問いに対し、
> >A=BC ならば、 C=1 とすれば B=A という回答は無意味です。
>
> フェルマーの最終定理の簡単な証明を簡単に説明すると、
省7
293
(2): 2019/12/24(火)20:00 ID:1JxoQQV4(3/5) AAS
>>288

z^p*1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}として、zを自然数とすると、
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}、z^p=z^pの2元連立方程式を解けばよいことになります。

別途証明が必要です。
連立方程式を解けばよいことになることを証明して下さい。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.031s