[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
194(2): 日高 2019/12/23(月)16:06 ID:ApwmpHz4(16/29) AAS
>192
>あなたは↓これらの式の左辺が『同じ』に見えるのか?
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}
z={x^(p-1)-x^(p-2)y+…+y^(p-1)}
z^2={x^(p-1)-x^(p-2)y+…+y^(p-1)}
...
z^p={x^(p-1)-x^(p-2)y+…+y^(p-1)}
いつの間に
1=z=z^2=...=z^p
>になったのだ?
省1
199(1): 2019/12/23(月)16:14 ID:J8D9GTGE(3/5) AAS
>194
>書き直した証明は、「左辺の右側と右辺の右側は等しいので、」は関係ありません。
また質問のに対する回答になっていないが。
>{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
これは貴方が
z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
の(左辺の右側)=(右辺の右側)という条件だろう?
その場合に解が無いのは合っているので問題無い。
省8
200(1): 2019/12/23(月)16:33 ID:J8D9GTGE(4/5) AAS
>194
連立方程式、調べたのか?
言われたお使いすら儘成らぬのか?
貴方が証明したのは、
z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
とした場合、
[1]連立方程式
(1) z^p=(x+y)
(2) 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}
の場合、(2)を満たす自然数解は{x,y|x=y=1}だけである。
省14
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s