[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
166
(2): 2019/12/22(日)23:49 ID:zXV7IPoi(12/12) AAS
>154

>z^(p-1)×z=z^pとなるので、同じとなります。

貴方は↓これらの式が『全て同じ。』と申すのか?

1={x^(p-1)-x^(p-2)y+…+y^(p-1)}
z={x^(p-1)-x^(p-2)y+…+y^(p-1)}
z^2={x^(p-1)-x^(p-2)y+…+y^(p-1)}
...
z^p={x^(p-1)-x^(p-2)y+…+y^(p-1)}
167
(2): 2019/12/23(月)00:04 ID:4FcTgt+Y(1/2) AAS
>>166
たぶん意味が通じていません。

>>1 日高
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(1)となる。
> (1)の左辺の右側と右辺の右側は等しいので、1={x^(p-1)-x^(p-2)y+…+y^(p-1)}…(2)となる。

において(1)を
z^1*z^(p-1)=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
z^2*z^(p-2)=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
...
z^(p-2)*z^2=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
省3
176
(1): 日高 2019/12/23(月)06:57 ID:ApwmpHz4(7/29) AAS
>166
>>z^(p-1)×z=z^pとなるので、同じとなります。

>貴方は↓これらの式が『全て同じ。』と申すのか?

書き直しました。
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
省1
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.027s