[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
161(1): 2019/12/22(日)23:13 ID:A2tvuhO3(1) AAS
>>148
> >146
> >じゃあそれを付加して、君の証明とやらを書いてごらん。
>
> 付加するだけなので、同じです。
意味が違うので同じではありません。
書き直さないかぎり、数学的に間違っているので無意味です。
162(1): 2019/12/22(日)23:15 ID:HjBnJeEI(12/14) AAS
>>158 日高
> >153
> >「〜のとき」と「〜とすると」は同義ですからそれはどうでもよろしい。
> そう仮定したなら、以下ずっと「A=Cとすると」を書き加えねばなりません。
>
> そうですね。
ひとごとのような書きぶりだけど,そう認めた以上,今後は君はそれを書き足さねばならない。
わかってる?
163(1): 2019/12/22(日)23:19 ID:EfTr4oQ/(13/13) AAS
>>155
それなら、
>>1の場合、「pが奇素数のとき、必ず(左辺の右側)=(左辺の右側)となる」
>>2の場合、「pが2の場合、必ず(左辺の右側)=(左辺の右側)となる」
を証明するか、
場合分けとして
「(左辺の右側)=(左辺の右側)でないとき」あるいは「(左辺の右側)≠(左辺の右側)とすると
を証明するか
どちらかをしないと証明できたことになりません。
164(1): 2019/12/22(日)23:20 ID:HjBnJeEI(13/14) AAS
>>160 日高
> >普通の人は、pを3として
> (x^3+y^3)*1=(x+y)(x^2-xy+y^2)から1=x^2-xy+y^2を導いたとしても
> x=2,y=3を代入して1=2^2-2*3+3^2となった時点で1=7だから何か間違えたと考える。
>
> この場合は、1=x^2-xy+y^2を満たす、x,yを考えます。
頭の働きが普通でないようです。
x=2,y=3を代入したのですから、もうx,yをさがす必要はありません。
x=2,y=3です。
165(1): 2019/12/22(日)23:23 ID:HjBnJeEI(14/14) AAS
ある式...…(1) から別の式...…(2) を導いたとき,
(1)を満たすx,y,などに対しそれらが(2)を満たすのが当然です。
そうでないなら(1)から(2)を導いたのが間違いです。
これ、わかりますか?
166(2): 2019/12/22(日)23:49 ID:zXV7IPoi(12/12) AAS
>154
>z^(p-1)×z=z^pとなるので、同じとなります。
貴方は↓これらの式が『全て同じ。』と申すのか?
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}
z={x^(p-1)-x^(p-2)y+…+y^(p-1)}
z^2={x^(p-1)-x^(p-2)y+…+y^(p-1)}
...
z^p={x^(p-1)-x^(p-2)y+…+y^(p-1)}
167(2): 2019/12/23(月)00:04 ID:4FcTgt+Y(1/2) AAS
>>166
たぶん意味が通じていません。
>>1 日高
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(1)となる。
> (1)の左辺の右側と右辺の右側は等しいので、1={x^(p-1)-x^(p-2)y+…+y^(p-1)}…(2)となる。
において(1)を
z^1*z^(p-1)=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
z^2*z^(p-2)=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
...
z^(p-2)*z^2=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
省3
168(2): 2019/12/23(月)00:29 ID:GNTdQjpR(1) AAS
>>167
x^2=x^2×1=x^2×1×1=x^2×1×1×1=x^2×1×1×1×1×1=…
×1(かけるいち)を入れていいことにすると、書き方が一意どころか無限になってしまうので、
×1を因数に含めてはいけない
r^2=x^2-y^2
両辺を因数分解して
r×r=(x+y)×(x-y)
という指摘に対して
> r^2=r×rは、因数分解ではないと思います。
> 因数分解とは、和の形を積の形にすることだと思います。
省1
169(2): 2019/12/23(月)00:41 ID:4FcTgt+Y(2/2) AAS
>>168
ああなるほど。わかってきました。
170: 日高 2019/12/23(月)06:42 ID:ApwmpHz4(1/29) AAS
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
171: 日高 2019/12/23(月)06:45 ID:ApwmpHz4(2/29) AAS
>161
>書き直さないかぎり、数学的に間違っているので無意味です。
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
172: 日高 2019/12/23(月)06:48 ID:ApwmpHz4(3/29) AAS
>162
>ひとごとのような書きぶりだけど,そう認めた以上,今後は君はそれを書き足さねばならない。
>わかってる?
書き直しました。
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
省1
173: 日高 2019/12/23(月)06:50 ID:ApwmpHz4(4/29) AAS
>163
>場合分けとして
「(左辺の右側)=(左辺の右側)でないとき」あるいは「(左辺の右側)≠(左辺の右側)とすると
を証明するか
>どちらかをしないと証明できたことになりません。
書き直しました。
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
省3
174: 日高 2019/12/23(月)06:52 ID:ApwmpHz4(5/29) AAS
>164
>頭の働きが普通でないようです。
x=2,y=3を代入したのですから、もうx,yをさがす必要はありません。
x=2,y=3です。
書き直しました。
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
省2
175: 日高 2019/12/23(月)06:55 ID:ApwmpHz4(6/29) AAS
>165
>ある式...…(1) から別の式...…(2) を導いたとき,
(1)を満たすx,y,などに対しそれらが(2)を満たすのが当然です。
そうでないなら(1)から(2)を導いたのが間違いです。
>これ、わかりますか?
書き直しました。
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
省3
176(1): 日高 2019/12/23(月)06:57 ID:ApwmpHz4(7/29) AAS
>166
>>z^(p-1)×z=z^pとなるので、同じとなります。
>貴方は↓これらの式が『全て同じ。』と申すのか?
書き直しました。
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
省1
177: 日高 2019/12/23(月)07:00 ID:ApwmpHz4(8/29) AAS
>167
>たぶん意味が通じていません。
書き直しました。
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
178: 日高 2019/12/23(月)07:04 ID:ApwmpHz4(9/29) AAS
>168
>x^2をx^2×1と書くことは、彼にとって唯一通りの因数分解らしいです。
書き直しました。
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
179(1): 日高 2019/12/23(月)07:06 ID:ApwmpHz4(10/29) AAS
>169
>ああなるほど。わかってきました。
書き直しました。
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
180(1): 2019/12/23(月)08:02 ID:/hls35hQ(1/2) AAS
>>179
> >169
> >ああなるほど。わかってきました。
>
> 書き直しました。
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> {x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
> (1)の自然数解は、x=1、y=1のみである。
何故?
181(2): 2019/12/23(月)08:04 ID:/hls35hQ(2/2) AAS
{x^(p-1)-x^(p-2)y+…+y^(p-1)}≠1
の考察がない。やり直し
182(1): 2019/12/23(月)08:24 ID:J8D9GTGE(1/5) AAS
>176
質問に対する答えになっていないが。
私が問うているのは
>貴方は↓これらの式が『全て同じ。』と申すのか?
これに対する回答は、先ずは『はい。』か『いいえ。』ではないのか?
省2
183(2): 2019/12/23(月)10:23 ID:g9LnGtlX(1/2) AAS
【日高の定理】二等辺三角形は正三角形である。
【日高の証明】三辺の長さをa,b,cとする。a=bとする。
a=cのときa=b=cなので正三角形である。
∴二等辺三角形は正三角形である。
184: 2019/12/23(月)10:41 ID:vWngmKCV(1/3) AAS
>>183
ワロタ
日高そのまんまの理屈だなw
185: 2019/12/23(月)10:42 ID:vWngmKCV(2/3) AAS
日高新スタイル
仮定を仮定の中で変形する
186(1): 日高 2019/12/23(月)14:45 ID:ApwmpHz4(11/29) AAS
>180
>{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
> (1)の自然数解は、x=1、y=1のみである。
何故?
x,yに大きな自然数を代入するほど、{x^(p-1)-x^(p-2)y+…+y^(p-1)}の値が、
大きくなります。
187: 2019/12/23(月)15:18 ID:vWngmKCV(3/3) AAS
正三角形 ⇒ 二等辺三角形 :真
二等辺三角形 ⇒ 正三角形 :偽
これより正三角形は二等辺三角形であることの十分条件でしかない
必要十分条件をやり直した方がよいと思う
188(2): 2019/12/23(月)15:18 ID:x9BwKyMs(1) AAS
>>186
> x,yに大きな自然数を代入するほど、{x^(p-1)-x^(p-2)y+…+y^(p-1)}の値が、
> 大きくなります。
何故?証明は?
189(1): 日高 2019/12/23(月)15:42 ID:ApwmpHz4(12/29) AAS
>181
>{x^(p-1)-x^(p-2)y+…+y^(p-1)}≠1
の考察がない。やり直し
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1
を満たすx,yについて考えます。
190(1): 日高 2019/12/23(月)15:50 ID:ApwmpHz4(13/29) AAS
>182
はい。
z^(p-1)×zと、z^pは同じだからです。
191: 日高 2019/12/23(月)15:53 ID:ApwmpHz4(14/29) AAS
>183
>【日高の定理】二等辺三角形は正三角形である。
【日高の証明】三辺の長さをa,b,cとする。a=bとする。
a=cのときa=b=cなので正三角形である。
∴二等辺三角形は正三角形である。
【日高の定理】
【日高の証明】ではありません。
192(1): 2019/12/23(月)15:56 ID:J8D9GTGE(2/5) AAS
>190
>はい。
>z^(p-1)×zと、z^pは同じだからです。
あなたは↓これらの式の左辺が『同じ』に見えるのか?
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}
z={x^(p-1)-x^(p-2)y+…+y^(p-1)}
z^2={x^(p-1)-x^(p-2)y+…+y^(p-1)}
...
z^p={x^(p-1)-x^(p-2)y+…+y^(p-1)}
いつの間に
省2
193(2): 日高 2019/12/23(月)16:01 ID:ApwmpHz4(15/29) AAS
>188
>x,yに大きな自然数を代入するほど、{x^(p-1)-x^(p-2)y+…+y^(p-1)}の値が、
> 大きくなります。
何故?証明は?
証明は、ありません。実験てきにそうなります。
194(2): 日高 2019/12/23(月)16:06 ID:ApwmpHz4(16/29) AAS
>192
>あなたは↓これらの式の左辺が『同じ』に見えるのか?
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}
z={x^(p-1)-x^(p-2)y+…+y^(p-1)}
z^2={x^(p-1)-x^(p-2)y+…+y^(p-1)}
...
z^p={x^(p-1)-x^(p-2)y+…+y^(p-1)}
いつの間に
1=z=z^2=...=z^p
>になったのだ?
省1
195(2): 日高 2019/12/23(月)16:07 ID:ApwmpHz4(17/29) AAS
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
196(2): 2019/12/23(月)16:09 ID:lNOBk12o(1/3) AAS
>>193
> >188
> >x,yに大きな自然数を代入するほど、{x^(p-1)-x^(p-2)y+…+y^(p-1)}の値が、
> > 大きくなります。
> 何故?証明は?
>
> 証明は、ありません。実験てきにそうなります。
じゃあ証明としては間違い。
197(2): 2019/12/23(月)16:10 ID:lNOBk12o(2/3) AAS
>>189
> >181
> >{x^(p-1)-x^(p-2)y+…+y^(p-1)}≠1
> の考察がない。やり直し
>
> {x^(p-1)-x^(p-2)y+…+y^(p-1)}=1
> を満たすx,yについて考えます。
考察がなければ、証明としては間違い。終わり。
198: 2019/12/23(月)16:12 ID:lNOBk12o(3/3) AAS
>>195
> 【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> {x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
> (1)の自然数解は、x=1、y=1のみである。
> x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
> (2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
> ∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
だめだと指摘があったのだから、解決し無い限り間違いのゴミ
199(1): 2019/12/23(月)16:14 ID:J8D9GTGE(3/5) AAS
>194
>書き直した証明は、「左辺の右側と右辺の右側は等しいので、」は関係ありません。
また質問のに対する回答になっていないが。
>{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
これは貴方が
z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
の(左辺の右側)=(右辺の右側)という条件だろう?
その場合に解が無いのは合っているので問題無い。
省8
200(1): 2019/12/23(月)16:33 ID:J8D9GTGE(4/5) AAS
>194
連立方程式、調べたのか?
言われたお使いすら儘成らぬのか?
貴方が証明したのは、
z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
とした場合、
[1]連立方程式
(1) z^p=(x+y)
(2) 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}
の場合、(2)を満たす自然数解は{x,y|x=y=1}だけである。
省14
201(2): 2019/12/23(月)16:36 ID:IzDk6yO7(1) AAS
>>195
結論が違う。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1 のとき、
x^p+y^p=z^pは、自然数解を持たない。
を証明してるだけ。
それ以外のときも証明して下さい。
202(1): 2019/12/23(月)16:52 ID:g9LnGtlX(2/2) AAS
>>193
問題の式が(x^p+y^p)/(x+y)に等しいことから証明できないかな。
203: 日高 2019/12/23(月)17:33 ID:ApwmpHz4(18/29) AAS
>202
>問題の式が(x^p+y^p)/(x+y)に等しいことから証明できないかな。
ヒント。ありがとうございました。解決しました。
204(1): 日高 2019/12/23(月)17:54 ID:ApwmpHz4(19/29) AAS
A=BCならば、C=1、B=Aとなる。
205(1): 日高 2019/12/23(月)18:06 ID:ApwmpHz4(20/29) AAS
>196
>>x,yに大きな自然数を代入するほど、{x^(p-1)-x^(p-2)y+…+y^(p-1)n}の値が、
> > 大きくなります。
> 何故?証明は?
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=(x^p+y^p)/(x+y)
解は、x=y=1となります。これを超えると(x^p+y^p)/(x+y)の値が大きくなります。
206(1): 日高 2019/12/23(月)18:11 ID:ApwmpHz4(21/29) AAS
>197
> >{x^(p-1)-x^(p-2)y+…+y^(p-1)}≠1
> の考察がない。やり直し
A=BCならば、C=1、B=Aとなる。
B=(x+y)、C={x^(p-1)-x^(p-2)y+…+y^(p-1)}、A=z^2
207(1): 2019/12/23(月)18:49 ID:JhSiZ4b4(1/2) AAS
>>204
A=BC ⇒ C=1 ∧ A=B
または
A=BC ⇒ B=1 ∧ A=C
これなんか意味あんの
結論はA=B=Cか?w
208(1): 2019/12/23(月)20:09 ID:mnLF//R7(1) AAS
藤林丈司
209: 日高 2019/12/23(月)20:29 ID:ApwmpHz4(22/29) AAS
>207
>結論はA=B=Cか?w
よく意味がわかりません。
210(1): 日高 2019/12/23(月)20:30 ID:ApwmpHz4(23/29) AAS
>208
>藤林丈司
よく意味がわかりません。
211(2): 日高 2019/12/23(月)20:40 ID:ApwmpHz4(24/29) AAS
>201
>{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1 のとき、
x^p+y^p=z^pは、自然数解を持たない。
を証明してるだけ。
それ以外のときも証明して下さい。
A=BCならば、C=1、B=Aとなる。
B=(x+y)、C={x^(p-1)-x^(p-2)y+…+y^(p-1)}、A=z^2
212(1): 日高 2019/12/23(月)20:52 ID:ApwmpHz4(25/29) AAS
>200
>他の連立方程式、例えば
z^(p-1)×z=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
とした場合の、
(1) z^(p-1)=(x+y)
(2) z={x^(p-1)-x^(p-2)y+…+y^(p-1)}
>の場合は何故考慮せぬのだ?
z^(p-1)×z=z^pとなるからです。
213(1): 日高 2019/12/23(月)20:57 ID:ApwmpHz4(26/29) AAS
>199
>z^2×z^(p-2)=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
z×z^(p-1)=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}
の場合は別の方程式になるが、これら方程式が『同じ』と申すのか?
>ということだ。
同じとなります。
214: 日高 2019/12/23(月)21:15 ID:ApwmpHz4(27/29) AAS
【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
したがって、x^2=(z+y)(z-y)…(1)となる。(z-y)=1…(2)とおく。
(2)をx^2=(z+y)に代入すると、x^2=2y+1…(3)となる。
(3)のxに任意の自然数を代入すると、yは、自然数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
215: 日高 2019/12/23(月)21:18 ID:ApwmpHz4(28/29) AAS
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
216(2): 日高 2019/12/23(月)21:27 ID:ApwmpHz4(29/29) AAS
A=BCならば、C=1、B=Aとなる。
C={x^(p-1)-x^(p-2)y+…+y^(p-1)}、B=(x+y)、A=z^p
217(1): 2019/12/23(月)21:34 ID:V6QF2hSU(1/2) AAS
>>216 日高
> A=BCならば、C=1、B=Aとなる。
A=25,B=C=5のとき成り立たないでしょ?
という説明は通用しないんだよね。
218(2): 2019/12/23(月)21:52 ID:J8D9GTGE(5/5) AAS
>212,213
だから連立方程式を調べてこい、と申している。
>z^(p-1)×z=z^pとなるからです。
だから何だ?
2組の連立方程式
(1-1) z^p=(x+y)
(1-2) 1={x^(p-1)-x^(p-2)y+…+y^(p-1)}
と
(2-1) z^(p-1)=(x+y)
(2-2) z={x^(p-1)-x^(p-2)y+…+y^(p-1)}
省12
219(3): 2019/12/23(月)22:11 ID:Akky99Qg(1) AAS
>>211
> A=BCならば、C=1、B=Aとなる。
別途証明が必要です。
いかなる場合も上記が成立することを証明して下さい。
220(2): 2019/12/23(月)22:59 ID:JhSiZ4b4(2/2) AAS
数学っていうのは全称命題か存在命題かをきちんと明示する必要がある
つまり元の成立範囲がわからなければ証明に意味がない
とくに圏論などが扱う対象については一階述語論理が通用しない場合もあるので
気を付けなければならない
圏論やホモロジー代数を使う可換環論や代数幾何学を学ぶ者は
とくに論理記号の成立範囲に注意をする必要がある
221(3): 2019/12/23(月)22:59 ID:V6QF2hSU(2/2) AAS
>>216 日高
> A=BCならば、C=1、B=Aとなる。
これは「A=BCならば、C=1、B=Aである」とは違うのですか?
222(1): 2019/12/23(月)23:11 ID:61Ic8zbh(1) AAS
6=2*3なので、3=1、2=6らしい
223(1): 2019/12/23(月)23:25 ID:URZ91DrQ(1) AAS
日高氏に聞いてみよう。
二つの多項式f(x,y)とg(x,y)とが等しいことの定義は何ですか?
224(2): 2019/12/24(火)00:02 ID:8vqh4FYI(1/2) AAS
>>205
> >196
> >>x,yに大きな自然数を代入するほど、{x^(p-1)-x^(p-2)y+…+y^(p-1)n}の値が、
> > > 大きくなります。
> > 何故?証明は?
>
> {x^(p-1)-x^(p-2)y+…+y^(p-1)}=(x^p+y^p)/(x+y)
> 解は、x=y=1となります。
いいえ。他に解が無いことが示されてません。
225: 2019/12/24(火)00:04 ID:8vqh4FYI(2/2) AAS
>>206
> >197
> > >{x^(p-1)-x^(p-2)y+…+y^(p-1)}≠1
> > の考察がない。やり直し
>
> A=BCならば、C=1、B=Aとなる。
意味不明。やり直し。数学の言葉で述べよ。
226: 日高 2019/12/24(火)05:42 ID:wiVzZJzo(1/45) AAS
>217
>A=BCならば、C=1、B=Aとなる。
>A=25,B=C=5のとき成り立たないでしょ?
という説明は通用しないんだよね。
25=5*5
25=5*5*5*(1/5)
となります。
227(2): 日高 2019/12/24(火)05:57 ID:wiVzZJzo(2/45) AAS
>218
>だから連立方程式を調べてこい、と申している。
>(2-1) z^(p-1)=(x+y)
>(2-2) z={x^(p-1)-x^(p-2)y+…+y^(p-1)}
(2-1),(2-2)が間違いです。
228: 2019/12/24(火)06:19 ID:r/nrjDdN(1) AAS
動画リンク[YouTube]
229(1): 日高 2019/12/24(火)06:22 ID:wiVzZJzo(3/45) AAS
>227
>(2-1),(2-2)が間違いです。
「意味がない」という意味です。
230(2): 日高 2019/12/24(火)06:32 ID:wiVzZJzo(4/45) AAS
>219
>A=BCならば、C=1、B=Aとなる。
別途証明が必要です。
>いかなる場合も上記が成立することを証明して下さい。
例
6=2*3
6=3*2*3*(1/3)
6=3*2*1
6=6
231: 2019/12/24(火)06:41 ID:upTKB2mp(1/3) AAS
>>230
> >219
> >A=BCならば、C=1、B=Aとなる。
> 別途証明が必要です。
> >いかなる場合も上記が成立することを証明して下さい。
>
> 例
> 6=2*3
> 6=3*2*3*(1/3)
> 6=3*2*1
省2
232(1): 日高 2019/12/24(火)06:43 ID:wiVzZJzo(5/45) AAS
>220
>数学っていうのは全称命題か存在命題かをきちんと明示する必要がある
私の勉強が及びません。
233(3): 日高 2019/12/24(火)06:47 ID:wiVzZJzo(6/45) AAS
>221
> A=BCならば、C=1、B=Aとなる。
>これは「A=BCならば、C=1、B=Aである」とは違うのですか?
A=BCならば、C=1とした場合は、B=Aとなる。という意味です。
234: 2019/12/24(火)06:47 ID:upTKB2mp(2/3) AAS
>>232
> >220
> >数学っていうのは全称命題か存在命題かをきちんと明示する必要がある
>
> 私の勉強が及びません。
なら、証明書く資格なし。絶対に正しい証明書けないから。
235: 2019/12/24(火)06:48 ID:upTKB2mp(3/3) AAS
>>233
> >221
> > A=BCならば、C=1、B=Aとなる。
> >これは「A=BCならば、C=1、B=Aである」とは違うのですか?
>
> A=BCならば、C=1とした場合は、B=Aとなる。という意味です。
言い訳は無意味。意味が通じてない時点で、数学としては間違い。
236: 日高 2019/12/24(火)06:57 ID:wiVzZJzo(7/45) AAS
>222
>6=2*3なので、3=1、2=6らしい
6=2*3なので、3*(1/3)=1、3*2=6となります。
237(1): 日高 2019/12/24(火)07:02 ID:wiVzZJzo(8/45) AAS
>223
>二つの多項式f(x,y)とg(x,y)とが等しいことの定義は何ですか?
分からないので、教えていただけないでしょうか。
238(1): 日高 2019/12/24(火)07:07 ID:wiVzZJzo(9/45) AAS
>224
> {x^(p-1)-x^(p-2)y+…+y^(p-1)}=(x^p+y^p)/(x+y)
> 解は、x=y=1となります。
いいえ。他に解が無いことが示されてません。
(x^p+y^p)/(x+y)に、x=y=1以外の数を代入すると、
x=y=1を代入した場合よりも、値が大きくなるからです。
239(1): 日高 2019/12/24(火)07:15 ID:wiVzZJzo(10/45) AAS
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
240: 日高 2019/12/24(火)07:17 ID:wiVzZJzo(11/45) AAS
【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
したがって、x^2=(z+y)(z-y)…(1)となる。(z-y)=1…(2)とおく。
(2)をx^2=(z+y)に代入すると、x^2=2y+1…(3)となる。
(3)のxに任意の自然数を代入すると、yは、自然数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
241(1): 日高 2019/12/24(火)07:20 ID:wiVzZJzo(12/45) AAS
A=BCならば、C=1のとき、B=Aとなる。
C={x^(p-1)-x^(p-2)y+…+y^(p-1)}、B=(x+y)、A=z^p
例
6=2*3
6=3*2*3*(1/3)
242(1): 2019/12/24(火)07:30 ID:uYcqp1CL(1/3) AAS
>>241
「A=BCならば」といった時点で、A,B,Cはもう何かの値を持つ数です。
後から×1をして、その×1を×Cということにすることはできません。
243(1): 2019/12/24(火)07:37 ID:uYcqp1CL(2/3) AAS
A=BCの例として6=2*3といった時点で、A=6,B=2,C=3と決定されます。
問題を解いている途中で6=2*3×1としても、A=2*3、C=1と変更してはいけません。
244: 日高 2019/12/24(火)07:37 ID:wiVzZJzo(13/45) AAS
>242
>「A=BCならば」といった時点で、A,B,Cはもう何かの値を持つ数です。
後から×1をして、その×1を×Cということにすることはできません。
詳しく説明していただけないでしょうか。
245(1): 日高 2019/12/24(火)07:39 ID:wiVzZJzo(14/45) AAS
>243
>A=BCの例として6=2*3といった時点で、A=6,B=2,C=3と決定されます。
>問題を解いている途中で6=2*3×1としても、A=2*3、C=1と変更してはいけません。
理由を教えていただけないでしょうか。
246(1): 2019/12/24(火)07:57 ID:2wc4yS4K(1/14) AAS
>>227,229
間違い?意味が無い?
では、218の4つの方程式を解いてみよ。
貴方が正しければ全て同じ式であり、同じ解だよな?
247: 2019/12/24(火)07:57 ID:uYcqp1CL(3/3) AAS
>>245
「A=BCならば」というのは今から話をする上で全員が認めること、「前提条件」です。
みんなで守らなければいけない決まり事です。
話の中で、「a=1とおくと」のように新たに文字を決めて使うのとは全く違います。
みんなで守らなければいけない決まり事を守れないならば、みんなの掲示板に書き込まないでください。
248(1): [sagd] 2019/12/24(火)08:15 ID:2wc4yS4K(2/14) AAS
>>246
この程度、『判りません』などと申すなよ?
249(1): 2019/12/24(火)08:40 ID:BWz/rqva(1/7) AAS
>>233
「となる」と「である」との違いをお尋ねしています。
答えてください。
250(1): 2019/12/24(火)08:43 ID:BWz/rqva(2/7) AAS
>>237
二つと多項式が等しいことの定義を知らないで、
「A=Bとなります」って主張してるの?
おかしくない?
251(1): 2019/12/24(火)09:11 ID:BWz/rqva(3/7) AAS
日高氏へ:
一次方程式ax=bは解けますか?
252(1): 日高 2019/12/24(火)09:26 ID:wiVzZJzo(15/45) AAS
>248
>p=3,z=2とした場合、次の4つの方程式の解はそれぞれ何になる?
(1) 2x+5y=1と置いた時の、x+3y=z^p
(2) 2x+5y=zと置いた時の、x+3y=z^(p-1)
(3) 2x+5y=z^2と置いた時の、x+3y=z^(p-2)
(4) 2x+5y=z^3と置いた時の、x+3y=z^(p-3)
(1)(2)(3)(4)ともx,yは自然数となりません。
253(1): 2019/12/24(火)10:18 ID:vIniIgSY(1) AAS
素因数分解の素って素数だよな
つまり1は含まれないから
6=2×3×1なんて書けないと思うよ
254(1): 2019/12/24(火)10:19 ID:2wc4yS4K(3/14) AAS
>>252
誰も『自然数解で』などと制限していないであろう。
『解が同じになるか?』と問うているのだが。
して、解けたのか?
255: 日高 2019/12/24(火)10:46 ID:wiVzZJzo(16/45) AAS
>249
>「となる」と「である」との違いをお尋ねしています。
答えてください。
よくわかりません。
256: 日高 2019/12/24(火)10:48 ID:wiVzZJzo(17/45) AAS
>250
>二つと多項式が等しいことの定義を知らないで、
「A=Bとなります」って主張してるの?
おかしくない?
よくわかりません。
257(1): 日高 2019/12/24(火)10:52 ID:wiVzZJzo(18/45) AAS
>251
>日高氏へ:
一次方程式ax=bは解けますか?
わかりません。
258: 日高 2019/12/24(火)10:55 ID:wiVzZJzo(19/45) AAS
>253
>素因数分解の素って素数だよな
つまり1は含まれないから
6=2×3×1なんて書けないと思うよ
よく意味がわかりません。
259(1): 日高 2019/12/24(火)11:25 ID:wiVzZJzo(20/45) AAS
>254
>誰も『自然数解で』などと制限していないであろう。
『解が同じになるか?』と問うているのだが。
して、解けたのか?
(1)x=-37、y=15
(2)x=-14、y=16
(3)x=2、y=0
(4)x=19、y=-6
となります。
260: 日高 2019/12/24(火)11:28 ID:wiVzZJzo(21/45) AAS
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
{x^(p-1)-x^(p-2)y+…+y^(p-1)}=1…(1)とおく。
(1)の自然数解は、x=1、y=1のみである。
x^p+y^p=z^pなので、z^p=(x+y)…(2)となる。
(2)に、x=1、y=1を代入すると、z^p=2となる。zは自然数とならない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
上下前次1-新書関写板覧索設栞歴
あと 742 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.025s