[過去ログ] フェルマーの最終定理の簡単な証明2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
40(1): 日高 2019/11/09(土)16:31 ID:DqOxkDYE(9/11) AAS
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇素数,yは有理数とする。x^p+y^p=z^p…@が、有理数解を持つかを検討する。
@をz=x+rとおくと、x^p+y^p=(x+r)^p…Aとなる。Aを積の形に変形してrを求める。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、Aはx^p+y^p=(x+p^{1/(p-1)})^p…C
となる。
Cはxを有理数とすると、zは無理数となる。よって、C,A,@は有理数解を持たない。
rが有理数ならば、Cの両辺に(a^{1/(p-1)})^pを掛けた
(xa^{1/(p-1)})^p+(ya^{1/(p-1)})^p=(xa^{1/(p-1)}+(pa)^{1/(p-1)})^p…Dとなる。
省3
42: 2019/11/09(土)16:57 ID:52eOZ1fz(3/5) AAS
>>40
指摘無視
0点
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.028s