[過去ログ] フェルマーの最終定理の簡単な証明2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
357: 2019/11/16(土)09:40:26.54 ID:tH0FpXQZ(1/5) AAS
>>349
> x/d,y/d,z/dは、Cの解になるんですか?
>
> x/d,y/d,z/dは、有理数なので、Cの解には、なりません。
ごまかさないでください。
有理数かどうかに関係なく、d=1でない限りx/d,y/d,z/dはCの式を満たさないでしょ。
x/d+p^{1/(p-1)}=z/d が成り立たないから。
で、Eが有理数解を持たないことは証明できるんですか。
638(1): 日高 2019/11/20(水)13:10:27.54 ID:7aosEsEb(12/20) AAS
>まずは全ての指摘とやりとりが解決してからだろが。
一つだけ上げてもらえれば、有難いです。
723: 日高 2019/11/22(金)11:53:19.54 ID:8QCwVY78(19/36) AAS
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】x^p+y^p=z^p…@を、z=x+rとおいて、x^p+y^p=(x+r)^p…Aとする。
Aを積の形に変形してrを求める。x,y,z,rは有理数と仮定する。
Aを(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…➂とする。
➂はr^(p-1)=pとすると、r=p^{1/(p-1)}となるので、AはX^p+Y^p=(X+p^{1/(p-1)})^p…➃となる。
rは無理数となるので、➃は仮定に反する。
➂の右辺に、a(1/a)を掛けるとr^(p-1){(y/r)^p-1}=pa{x^(p-1)+…+r^(p-2)x}(1/a)…Dとなる。a(1/a)=1となる。
r^(p-1)=p以外の場合は、r^(p-1)=paとなる。r=(pa)^{1/(p-1)}となるのでrは有理数となる。AはX^p+Y^p=(X+(pa)^{1/(p-1)})^p…Eとなる。
EのX,Y,ZはCのx,y,zのa^{1/(p-1)}倍となるので、X:Y:Z=x:y:zとなる。よって、Eも仮定に反する。
省1
773: 2019/11/23(土)09:45:34.54 ID:30feOc/R(2/2) AAS
>>771
「専ブラ」でググると良いよ
790(1): 日高 2019/11/24(日)20:04:40.54 ID:WKgCBUrz(4/8) AAS
>最初から最後まで。
最初の一行目の、何文字目からでしょうか。
927(2): 日高 2019/11/28(木)12:08:37.54 ID:1uG5ZQsU(9/30) AAS
>>あなたは「r^(p-1)=p」を仮定と考えていますか?結論と考えていますか?
なぜ、「r^(p-1)=p」が仮定か結論かを、言わないといけないのでしょうか?
証明には、必ず必要なことなのでしょうか?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s