Inter-universal geometry と ABC予想 (応援スレ) 74 (963レス)
Inter-universal geometry と ABC予想 (応援スレ) 74 http://rio2016.5ch.net/test/read.cgi/math/1755784703/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
8: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/21(木) 23:03:36.75 ID:/FwGOxIP つづき <厳密だけが、数学ではない> <数学と厳密> あなたのまったく逆を、渕野先生が書いている ”厳密性を数学と取りちがえるという勘違い” https://www.amazon.co.jp/dp/4480095470 数とは何かそして何であるべきか デデキント 訳解説 渕野昌 筑摩書房2013 「数学的直観と数学の基礎付け 訳者による解説とあとがき」 P314 (抜粋) 数学の基礎付けの研究は,数学が厳密でありさえすればよい, という価値観を確立しようとしているものではない. これは自明のことのようにも思えるが,厳密性を数学と取りちがえるという勘違いは, たとえば数学教育などで蔓延している可能性もあるので, ここに明言しておく必要があるように思える 多くの数学の研究者にとっては,数学は,記号列として記述された「死んだ」数学ではなく, 思考のプロセスとしての脳髄の生理現象そのものであろう したがって,数学はその意味での実存として数学者の生の隣り合わせにあるもの,と意識されることになるだろう そのような「生きた」「実存としての」(existentialな)数学で問題になるのは, アイデアの飛翔をうながす(可能性を持つ)数学的直観」とよばれるもので, これは, ときには,意識的に厳密には間違っている議論すら含んでいたり, 寓話的であったりすることですらあるような, かなり得体の知れないものである 加藤文元氏 メンタルピクチャー、形式化図式と数学の「理解」 IUTに欠落しているのは、メンタルピクチャー&形式化図式か (参考) https://note.com/katobungen/n/nccba3ef014f6 note.com なぜ微分積分学は不完全なのか? 加藤文元 2025年2月23日 メンタルピクチャー 私は数学や数学の理解に関するいくつかの概念とその用語を導入したいと思う。そのうちのひとつは「メンタルピクチャー(MP)」というものだ。 形式化された理論 メンタルピクチャーの対極にあるのは、形式化(formalize)されコード化された理論(FT)だ。 数学の研究論文における形式的●●●議論は、例えばLean4やCoqなどのコンピューター言語による形式化からすれば、まだまだ「非形式的(informal)」なものだろう。人間のやる数学はまだまだインフォーマルであり、行間が広く、とてもとても形式的議論とは言えない。 とはいえ、ここで「メンタルピクチャー(MP)」の対極にある概念としての「形式化された理論(FT)」は、人間の書いた論文の議論のようなものも含む、広い概念である。そして、数学の厳密化とか精密化とは、このような緩い意味での形式化 (*) MP ーーーー形式化ー> FT のことである。 形式化図式と数学の「理解」 形式化図式は数学を「理解する」という行為の内実とも、深く関係している。人間による数学の理論とは、単なるコードの連なりとして理解することではない。それは理論のメンタルピクチャー(MP)と、それと形式的理論との関連付け、すなわち形式化図式を構築することである。メンタルピクチャーだけによる理解は危険であるが、メンタルピクチャーによる裏付け・接地のない理解は不健康である。それは健康でないだけでなく、理解の深さがないという意味でも、完全な理解とは言えない。 つづく http://rio2016.5ch.net/test/read.cgi/math/1755784703/8
19: 132人目の素数さん [] 2025/08/22(金) 06:51:37.58 ID:DmmS/CLT >>8 >”厳密性を数学と取りちがえるという勘違い” >なぜ微分積分学は不完全なのか? 大学1年の一般教養「微分積分学」の 実数の定義がチンプンカンプンで落ちこぼれた 神戸の公立高出身のカス高卒 http://rio2016.5ch.net/test/read.cgi/math/1755784703/19
201: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/25(月) 18:31:40.61 ID:NbOUr+U1 >>192-198 ふっふ、ほっほ >>191の「<特別寄稿>スコーレムの有限主義 出⼝, 康夫. 哲学論叢. 2002」 日本の1980年代の大学数学教育は 有限主義的な教え方が主だったろう だが、その後 ”超準解析”が広まっていった 21世紀では、スコーレム流の有限主義は 古いと思うねw ;p) 加藤文元氏 メンタルピクチャーや Terence Taoの“big picture”としても イマイチだろう(時代おくれ) (参考) https://ja.wikipedia.org/wiki/%E8%B6%85%E6%BA%96%E8%A7%A3%E6%9E%90 超準解析 微分積分学の歴史(英語版)は、流率法(英語版)あるいは無限小数の意味および論理的妥当性に関する哲学的論争を孕んでいる。これらの論争の標準的な解決策は、微分積分学における操作を無限小ではなくイプシロン-デルタ論法によって定義することである。超準解析(英: nonstandard analysis)[1][2][3]は代わりに論理的に厳格な無限小数の概念を用いて微分積分学を定式化する。Nonstandard Analysisは直訳すれば非標準解析学となるが、齋藤正彦が超準解析という訳語を使い始めたため、そのように呼ばれるようになった[4][5]。無限小解析(infinitesimal analysis)という言葉で超準解析を意味することもある。 教育的 ハワード・ジェローム・キースラー、デイビット・トールやその他の教育者らは、無限小の使用は学生達にとって"イプシロン-デルタ"アプローチよりもより直感的かつ容易に解析学的概念を把握することができるものである、と主張する[12]。 (>>8-9より再録) 加藤文元氏 メンタルピクチャー、形式化図式と数学の「理解」 IUTに欠落しているのは、メンタルピクチャー&形式化図式か https://note.com/katobungen/n/nccba3ef014f6 note.com なぜ微分積分学は不完全なのか? 加藤文元 2025年2月23日 メンタルピクチャー 私は数学や数学の理解に関するいくつかの概念とその用語を導入したいと思う。そのうちのひとつは「メンタルピクチャー(MP)」というものだ。 つづく http://rio2016.5ch.net/test/read.cgi/math/1755784703/201
306: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/26(火) 21:00:55.16 ID:dSyweoWi >>304 >君、頭大丈夫? >添え字集合が有限だろうと可算無限だろうと非可算無限だろうと、無限操作なるものが存在するなんの証拠にもなってないことが分からないの? ふっふ、ほっほ 1)まず、下記の公理的集合論 集合の公理系 において その集合に対する操作は、無限有限の区別なし! 無限集合を扱うのだから、その公理も 無限を扱えるように設定されているのだよw ;p) 2)君は、『加藤文元氏 メンタルピクチャー、形式化図式と数学の「理解」 Terence Tao “big picture”』が欠落している 3)つまり、日常の数学の下に素朴集合論があり、その下に 公理的集合論がある 三階建で、3階が日常の数学、2階が素朴集合論、1階が公理的集合論だ それで、3階の日常の数学で 何か無限操作を考えるとき それを 2階の素朴集合論 なり 1階の公理的集合論に翻訳できれば その日常の数学の無限操作は許されるのだよ■ ;p) (参考) https://ja.wikipedia.org/wiki/%E5%85%AC%E7%90%86%E7%9A%84%E9%9B%86%E5%90%88%E8%AB%96 公理的集合論 集合の公理系 ツェルメロ=フレンケル集合論(ZF公理系) ・対の公理 任意の要素 x, y に対して、x と y のみを要素とする集合が存在する: ∀x∀y∃A∀t(t∈A↔(t=x∨t=y)) 。 外延性の公理から、x と y に対して対の公理が存在を主張する集合はただ一つであることが言えるので、これを {x,y}で表す。 {x,x} を {x}で表す。これにより順序対の存在が言え、それにより直積集合の存在も言える。 ・和集合の公理 任意の集合 X に対して、X の要素の要素全体からなる集合が存在する: ∀X∃A∀t(t∈A↔∃x∈X(t∈x)) 。 外延性の公理から、X に対して和集合の公理が存在を主張する集合はただ一つであることが言えるので、これを X の和集合と呼び、∪Xで表す。 ∪{x,y} を x∪y で表す。 ・冪集合公理 任意の集合 X に対して X の部分集合全体の集合が存在する: ∀X∃A∀t(t∈A↔t⊆X) 。 外延性の公理から、X に対して冪集合の公理が存在を主張する集合はただ一つであることが言えるので、これを X の冪集合と呼び、 P(X)または2^xで表す。 ・置換公理 "関数クラス"による集合の像は集合である: ∀x∀y∀z((ψ(x,y)∧ψ(x,z))→y=z)→∀X∃A∀y(y∈A↔∃x∈Xψ(x,y)) 。 この公理は、論理式 ψ をパラメータとする公理図式である。 >>8-9より 再録 加藤文元氏 メンタルピクチャー、形式化図式と数学の「理解」 Terence Tao “big picture” (参考) https://note.com/katobungen/n/nccba3ef014f6 note.com なぜ微分積分学は不完全なのか? 加藤文元 2025年2月23日 メンタルピクチャー 私は数学や数学の理解に関するいくつかの概念とその用語を導入したいと思う。そのうちのひとつは「メンタルピクチャー(MP)」というものだ つづく http://rio2016.5ch.net/test/read.cgi/math/1755784703/306
442: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/28(木) 11:10:15.93 ID:BOT/TM68 >>438-441 ご苦労様です >無限線型結合なるものを認めるのは線形位相空間 >形式級数は実は和をとってない >自然数から各項の係数への写像があればいい >写像の値同士を足すことで、級数同士の和が定義できる さて (参考) https://ja.wikipedia.org/wiki/%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E7%A9%BA%E9%96%93 ベクトル空間、線型空間(英: linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である 導入 ベクトル空間の概念について、特定の二つの場合を例にとって簡単に内容を説明する 平面上の有向線分 略 数の順序対 略 定義 集合 V が、その上の二項演算 + と、体 F の V への作用 ◦ をもち、これらが任意の u, v, w ∈ V; a, b ∈ F[nb 1]に関して次の公理系を満たすとき、三組 (V, +, ◦) は「体 F 上のベクトル空間」と定義される[1][2]。 公理: 加法の結合律、可換律、逆元の存在・・ 歴史 ベクトル空間の重要な発展がアンリ・ルベーグによる函数空間の構成によって起こり、後の1920年ごろにステファン・バナフとダフィット・ヒルベルトによって定式化された。その当時、代数学と新しい研究分野であった関数解析学とが相互に影響し始め、 p-乗可積分函数の空間 Lp やヒルベルト空間などの重要な概念が生み出されることとなる。そうして無限次元の場合をも含むベクトル空間の概念は堅く確立されたものとなり、多くの数学分野において用いられ始めた (引用終り) 「形式級数は実は和をとってない 自然数から各項の係数への写像があればいい」 という メンタルピクチャー(加藤文元>>8)を否定はしない 複雑な対象は、多面的な切り口で見るべしが、私の流儀だから だが、形式的冪級数環>>429は 上記のja.wikipedia ベクトル空間の公理を満たすよ だから、形式的冪級数環は ベクトル空間の一種であり 収束を考えないのが 形式的冪級数の根本なのだから 素朴かつ単純に無限和と考えても 収束を考えない以上 矛盾は生じない >有理数の無限列Q^Nにおけるコーシー列の全体は部分線形空間をなす 余談だが、Formal power series 下記 "形式的な冪級数を関数として解釈する" がある f(x)= Σ n >= 0 a_n*x^n =a0 + a1 x +a2 x^2 +a3 x^3 +・・・ で 10進小数展開を考える。 x=1/10 として a1 ,a2,a3,・・が 0〜9の整数で 和や積では 各項の演算は 通常算術の通り繰り上がり 繰り下がりを導入して a0は 任意整数とする これで 形式的な冪級数を使った 無限10進少数展開を考えることができる これが 従来のコーシー列の収束による実数の定義と一致することは 賢い人は少し考えれば分かるだろう (私は 賢くないので略しますw ;p) (参考) https://en.wikipedia.org/wiki/Formal_power_series Formal power series (google訳) 形式冪級数 形式的な冪級数を関数として解釈する 数学解析において、すべての収束する冪級数は、実数または複素数の値を持つ関数を定義します。特定の特殊環上の形式的な冪級数も関数として解釈できますが、定義域と余域には注意が必要です f(x)= Σ n >= 0 a_n*x^n (nは自然数全体を渡る) http://rio2016.5ch.net/test/read.cgi/math/1755784703/442
468: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/29(金) 07:43:37.26 ID:QS2EkFr7 >>442 追加 >10進小数展開を考える。 x=1/10 として a1 ,a2,a3,・・が 0〜9の整数で >和や積では 各項の演算は 通常算術の通り繰り上がり 繰り下がりを導入して >a0は 任意整数とする >これで 形式的な冪級数を使った 無限10進少数展開を考えることができる >これが 従来のコーシー列の収束による実数の定義と一致することは 賢い人は少し考えれば分かるだろう 下記、”形式的冪級数環R[[x]]は、多項式環R[X]の(x)進完備化として見ることができる” に関連して 有理数環Q(実は体)を係数とする多項式Q[X]で 上記同様に ”x=1/10 として a1 ,a2,a3,・・が 0〜9の整数で 和や積では 各項の演算は 通常算術の通り繰り上がり 繰り下がりを導入して a0は 任意整数とする”ことで 有限小数環(これをUとする)ができる 有理数Qを完備化すると、実数Rを得ると同様に 有限小数環Uを完備化すると、R[X]→R[[x]]同様に 実数Rを得る■ 形式的冪級数環R[[x]]を、どうメンタルピクチャー(>>8 加藤文元)として とらえるか? それは各人自由だが 『形式冪級数は収束の概念とは独立して考えられる無限和』(下記) と考えるのも ”あり”だろう (参考) https://en.wikipedia.org/wiki/Formal_power_series Formal power series (google訳) 形式冪級数 形式冪級数は収束の概念とは独立して考えられる無限和であり、級数に対する通常の代数演算(加算、減算、乗算、除算、部分和など)で操作することができます。 A formal power series with coefficients in a ring R is called a formal power series over R. The formal power series over a ring R form a ring, commonly denoted by R[[x]]. (It can be seen as the (x)-adic completion of the polynomial ring R[x], in the same way as the p-adic integers are the p-adic completion of the ring of the integers.) 環R上の係数を持つ形式的な冪級数Rは、R環上の形式的冪級数環を形成する。 環R上の形式的冪級数は、一般的にはR[[×]]と書かれる。 (これは多項式環R[×]の(x)進完備化として見ることができる、p進整数が整数環のp進完備化であるのと同じです) http://rio2016.5ch.net/test/read.cgi/math/1755784703/468
524: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/30(土) 16:36:09.71 ID:jE3Cs7nW >>468 戻る (引用開始) 形式的冪級数環R[[x]]を、どうメンタルピクチャー(>>8 加藤文元)として とらえるか? それは各人自由だが 『形式冪級数は収束の概念とは独立して考えられる無限和』(下記) と考えるのも ”あり”だろう https://en.wikipedia.org/wiki/Formal_power_series Formal power series (google訳) 形式冪級数 形式冪級数は収束の概念とは独立して考えられる無限和であり、級数に対する通常の代数演算(加算、減算、乗算、除算、部分和など)で操作することができます。 A formal power series with coefficients in a ring R is called a formal power series over R. The formal power series over a ring R form a ring, commonly denoted by R[[x]]. (It can be seen as the (x)-adic completion of the polynomial ring R[x], in the same way as the p-adic integers are the p-adic completion of the ring of the integers.) 環R上の係数を持つ形式的な冪級数Rは、R環上の形式的冪級数環を形成する。 環R上の形式的冪級数は、一般的にはR[[×]]と書かれる。 (これは多項式環R[×]の(x)進完備化として見ることができる、p進整数が整数環のp進完備化であるのと同じです) (引用終り) 形式冪級数 Σ_n=0〜∞ an X^n=a0+a1X+a2X^2+・・・ ここで >>483 川崎徹郎流 で 可算無限列 a0, a1X, a2X^2, ・・・ を構成して 間に和の記号 + を挿入 ”極限の操作を経ずに、いっぺんに定まる”>>483 で ”Σ_n=0〜∞ an X^n=a0+a1X+a2X^2+・・・” を考えれば良いだけのことよ■ http://rio2016.5ch.net/test/read.cgi/math/1755784703/524
558: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/31(日) 09:06:12.61 ID:lylF2dxQ >>91 戻る (引用開始) 3)さて、日常の数学では 無限集合を扱う場合に 自然言語で 無限操作を考えることはよくある 例えば、下記の「箱入り無数目」”可算無限個ある箱に 実数を入れる”など 無限集合を 自然言語で扱う以上、無限操作を考えることは当然ありだ (極限? およびじゃない) 要するに、日常の数学では 無限集合を扱う場合に 自然言語で 無限操作を考えることはよくあるってことよ (引用終り) 下記の日比谷高校のススメ 【数学小話】無限と有限のお話?〜?が参考になるだろう ゼノンのパラドックス:この話が解決できない理由、それはずばり「無限回の操作には無限の時間がかかると錯覚している点」です (操作を)無限に積み重ねても有限の値に収まるですね >>8 加藤文元 メンタルピクチャー 形式化図式と数学の「理解」 要するに、現代数学においては、”無限回の操作は 可能” かかる時間は0 その中で、例外として 無限回の操作が意味が無いとか 不適切の場合がある 確かに、無限回の操作を認めず それを有限の極限として意味づけられる場合のみ 認めるという風潮が 1980年代までの日本にはあった。が、その考えは 21世紀の現代数学では 古い 『現代数学においては、”無限回の操作は 可能” かかる時間は0』という メンタルピクチャー 形式化図式と数学の「理解」が適切でしょう (参考) https://hibiyastudy.haenablog.com/entry/math/infinite/01 日比谷高校のススメ 2018-03-29 【数学小話】無限と有限のお話? 数回に分けて無限とはどのようなものか、無限をどのように扱うのかについて解説していけたらなと思います。 私はこの「無限個」という言葉は数学用語でなくあくまで日常会話で使われる一般的な言葉として捉え、当ブログでも使っていきます。「無限に多い個数」という意味で使っていきます。 全ての整数の範囲において、最も大きな数はないということを言っています。 例えば、負の整数の範囲において、最も大きな数は-1です。考える範囲によっては当然最も大きい数が存在してしまうこともあります。 ・ゼノンのパラドックス 「アキレスと亀」という名前で知られる、ゼノンが唱えた有名なパラドックスです。 「アキレスが亀のいた地点に行く→その間に亀がほんの少し前に進む」 これが無限に繰り返されるのです。 無限に繰り返されるので、いつまでたっても終わりがない、よって追いつかないというこのパラドックスは、長年数学者を苦しめました。ゼノンは紀元前5世紀の古代ギリシア哲学者ですが、これを解決に導く現代数学が生まれたのは20世紀です。2500年近くもこの疑問に誰も納得のできるよい反論ができなかったのです。 ではどのようにこの問題を解決したのか。それは次回話していこうと思います つづく http://rio2016.5ch.net/test/read.cgi/math/1755784703/558
603: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/31(日) 23:14:01.13 ID:lylF2dxQ >>457 (引用開始) ちなみにAIに ・数学科以外でも知っといたほうがいい最も難しい数学 ・数学科以外は知らないても全然困らない数学 の例を示してと尋ねたらこう答えた 前者:確率過程 後者:ガロア理論 (引用終り) まあ、そのAIはGrok(グロック)だろうが Grokを含めて 生成AI は 相手に結構迎合すると言われている(下記) 数学科のオチコボレさんの さびしい心情に迎合したんだろうよw ;p) さて、>>8-9 加藤文元氏 メンタルピクチャー & “big picture”Terence Tao の視点から ガロア理論、確率過程 の両方とも メンタルピクチャー & “big picture”の構築に役に立つよ 即ち、ガロア理論は 抽象代数学の 群と体とを主に使う。それと 代数方程式という 多分 中学高校からの数学の大きなテーマ ガロア理論を理解することで、群と体と代数方程式のジグソーパズルのメンタルピクチャー & “big picture”が手に入る (この中には 写像や同型、準同型も含まれる) つまり、これらの抽象代数学の深い理解が得られるんだ。(群と体が分れば、環も理解しやすいだろう) つまりは、抽象代数学のマスタークラスに到達 同様に、確率過程のためには 大学レベルの測度論的確率論の理解が必要で、測度論的確率論には 測度論の理解がいる というか、確率論→確率過程 と進むことは 測度論の応用分野を知ることであり、測度論の理解が深まるんだよね これも メンタルピクチャー & “big picture”の構築に役に立つ あと、いま学生で20歳前後としようか 60歳くらいまでは、現役で社会で活躍することを考えると、40年後 2065年の社会や必要な数学がどうなっているのか それは、だれも正確な予測はできないだろうが ガロア理論、確率過程 くらいは 勉強して 自分のメンタルピクチャー & “big picture”の構築しておくべき それが、20歳から40年後まで活躍するための 勉強の基礎になるよ AI? AIの答えは 読んでみたけど 所詮 古新聞だな 過去は こうだったって話でしか無い。コミだよ■ (参考) https://note.com/toumu0208/n/nc2cffe7c1c81 note.com AIに相談したら、全部うなずいてくれた──それって本当に安心? 桃生篤(株式会社Toumu) 2025年5月3日 今日は、GPT-4oという生成AIで起きた「迎合しすぎ問題」について、ちょっと考えてみたいと思います。 GPT-4oというモデルに2023年4月25日にアップデートが入ったとき、「ちょっとユーザーに迎合しすぎてるんじゃない?」という声が上がりました。たとえば、ユーザーが怒っているとそれに同調したり、不安に対して「そうですね、怖いですよね」と返したり。 http://rio2016.5ch.net/test/read.cgi/math/1755784703/603
712: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/09/03(水) 14:39:54.01 ID:hNzKNOFY >>711 >いずれにしろ数学には無限回操作なるものは存在しない >無限集合、無限列、無限級数・乗積、無限小数、無限合併・交叉、形式的冪級数はいずれも無限回操作の産物ではない アタマ 堅そうw >>8-9 加藤文元氏 メンタルピクチャー、形式化図式と数学の「理解」 <“big picture”> Terence Tao まあ、言い方はなんでもいい 下記のPeriod-Mathematics氏は ”大学数学(数学科標準)を生き抜くために 〜作法、知恵、勉強法〜 (現代)数学の全体像を大雑把に把握しておく” という 現代数学から ”無限”に関する部分をすべて消したら? ニュートン、ライプニッツ以前になるだろうか? 下記の 松本雄也 東京理科大 環論講義ノート ”B.2形式冪級数環と収束冪級数環” 可算無限の項を持つ級数の環 収束するとき、”Cの原点上の近傍での正則関数” これが、”メンタルピクチャー、形式化図式と数学の「理解」”じゃね?w ;p) (参考) http://yuyamatsumoto.com/ed.html 松本雄也 東京理科大学 理工学部 数学科 助教(2018年4月―) 代数学 環論入門コース [2023/03/05] 111 pages http://yuyamatsumoto.com/ed/kanron.pdf 環論講義ノート 松本雄也 2023年03月05日 B環の例 66 B.1多項式環の亜種:モノイド環,群環.. . . . . . . 66 B.2形式冪級数環と収束冪級数環. . . . . . . . . 67 B.2.1 形式冪級数環 定義 B.6. Aを環とする.直積集合A[[X]] := AN に対し,多項式環と同様に加法と乗法を定める: この環をA上の1変数の形式冪級数環(formal power series ring) という. A((X)) := A[[X]][X−1] は形式冪級数に有限個の負冪の項を加えた級数からなる環であり,1元X による局所化でもある.この環の元を形式ローラン級数 (formal Laurent power series) という.Aが体ならばA((X)) = FracA[[X]] でありこれは体である. B.2.2 収束冪級数環 Aに適切な構造が入っていれば,冪級数の収束や収束半径を考えることができる.ここではA=Cの場合のみ考える.Cの原点上の近傍での正則関数を考えると,そのTaylor展開が考えられ,収束半径は正の実数または無限大である.r>0に対し,Br :={ n≥0anzn |収束半径はr以上である} とする (追加(参考)) https://period-mathematics.hatenablog.com/entry/2022/02/11/192336 Period-Mathematics 2022-02-11 写像の像より逆像の方が和集合だけでなく共通部分も保つなど良い性質を持つ理由は圏論的な”説明”が出来ます。詳細が気になる方はこちらhttp://yuyamatsumoto.com/ed/adjoint.pdf。一言でいうと像を取る関手は右随伴しか持たないのに対し逆像を取る関手は左随伴も右随伴も持つことに由来します。 大学数学(数学科標準)を生き抜くために 〜作法、知恵、勉強法〜 (現代)数学の全体像を大雑把に把握しておく これはとても重要だと考えています。具体的にはその後の勉強の(心理的な)しやすさが圧倒的に変わります。 http://rio2016.5ch.net/test/read.cgi/math/1755784703/712
778: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/09/06(土) 09:50:26.95 ID:JgP2aXhR つづき さて 下記 <厳密だけが、数学ではない> 『論理は確実性しか与えず、証明の手段である。直感は発明の手段である』 by ポアンカレ 百回音読しましょう! >>8-9より <厳密だけが、数学ではない> <数学と厳密> あなたのまったく逆を、渕野先生が書いている ”厳密性を数学と取りちがえるという勘違い” https://www.amazon.co.jp/dp/4480095470 数とは何かそして何であるべきか デデキント 訳解説 渕野昌 筑摩書房2013 「数学的直観と数学の基礎付け 訳者による解説とあとがき」 P314 (抜粋) 数学の基礎付けの研究は,数学が厳密でありさえすればよい, という価値観を確立しようとしているものではない. これは自明のことのようにも思えるが,厳密性を数学と取りちがえるという勘違いは, たとえば数学教育などで蔓延している可能性もあるので, ここに明言しておく必要があるように思える 多くの数学の研究者にとっては,数学は,記号列として記述された「死んだ」数学ではなく, 思考のプロセスとしての脳髄の生理現象そのものであろう したがって,数学はその意味での実存として数学者の生の隣り合わせにあるもの,と意識されることになるだろう そのような「生きた」「実存としての」(existentialな)数学で問題になるのは, アイデアの飛翔をうながす(可能性を持つ)数学的直観」とよばれるもので, これは, ときには,意識的に厳密には間違っている議論すら含んでいたり, 寓話的であったりすることですらあるような, かなり得体の知れないものである https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9 Henri Poincaré https://en.wikipedia.org/wiki/The_Value_of_Science The Value of Science (French: La Valeur de la Science) is a book by the French mathematician, physicist, and philosopher Henri Poincaré. It was published in 1904. The book deals with questions in the philosophy of science and adds detail to the topics addressed by Poincaré's previous book, Science and Hypothesis (1902). (google訳) 直感と論理 最後に、ポアンカレは幾何学と解析学 の科学の間に根本的な関係があるという考えを提唱しました。彼によれば、直感には二つの主要な役割があります。科学的真理を探求する上でどの道を進むべきかを選択すること、そして論理的展開を理解することです。 論理は確実性しか与えず、証明の手段である。直感は発明の手段である。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1755784703/778
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s