Inter-universal geometry と ABC予想 (応援スレ) 74 (974レス)
Inter-universal geometry と ABC予想 (応援スレ) 74 http://rio2016.5ch.net/test/read.cgi/math/1755784703/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
678: 132人目の素数さん [] 2025/09/02(火) 14:35:41.82 ID:SkBP9bZ4 つづき >「{}に0,1,2,・・・を順次追加していき、無限回の追加が完了してNが出来上がる」 >とはなっていないことは、ペアノの公理を一階述語論理上で形式化した場合に >超準的自然数を持つモデルが生じてしまうことからも明らかである そうですな ここで重要ポイントは、一階述語論理は 綺麗だが 弱くて不便 普段の数学は、一階述語論理しばりは うれしくないってことですね https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 公理 この公理は、数学的帰納法の原理である[注釈 3]。 これらの公理は互いに独立であり、いずれも残りから導くことはできない[5]。 注釈3 ^ 任意の部分集合に関する量化を行っているので、これは一階述語論理では形式化できない。 範疇性 集合 ℕ^ と定数 0^ と関数 S^ がペアノの公理を満たすとき組 (ℕ^, 0^, S^) をペアノ構造(Peano structure)という。ペアノ構造は同型を除いてただ一つに定まる[注 1]、つまりペアノの公理は範疇的(categorical)であることがわかる。 一方で後述するペアノ算術はレーヴェンハイム=スコーレムの定理から超準モデルをもつので範疇的ではない。 注釈1 ^ すなわち全単射 φ: ℕ → ℕ^ で φ(0) = 0^ かつ φ ∘ S = S^ ∘ φ を満たすものが存在する。 https://en.wikipedia.org/wiki/Peano_axioms Peano axioms (google訳) 次の3つの公理は、自然数に関する一階の命題であり、後続演算の基本的な性質を表現する。9番目の最後の公理は、自然数に対する数学的帰納法の原理に関する二階の命題であり、この定式化は二階算術に近い。 https://en.wikipedia.org/wiki/Second-order_logic Second-order logic (google訳) 表現力 二階述語論理は一階述語論理よりも表現力に富んでいます。例えば、定義域がすべての実数の集合である場合、一階述語論理では、各実数の加法逆数が存在することを次のように主張できます。 略 しかし、実数集合の最小上界性、すなわち、すべての有界かつ空でない実数集合には上限が存在することを主張するには、二階述語論理が必要である 第二階論理では、「定義域は有限である」または「定義域は可算 濃度である」という形式文を書くことができます。 History and disputed value In recent years[when?] second-order logic has made something of a recovery, buoyed by Boolos' interpretation of second-order quantification as plural quantification over the same domain of objects as first-order quantification (Boolos 1984). (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1755784703/678
680: 132人目の素数さん [] 2025/09/02(火) 15:12:36.97 ID:CgKIxbLR >>678 >普段の数学は、一階述語論理しばりは うれしくないってことですね それ、典型的な素人の発言 一階述語論理は完全性定理が成立するのでうれしい 二階述語論理は標準モデルに関して完全性定理が成立しない ヘンキンモデルなら完全性定理が成り立つだろう、と「したり顔」でいう人がいるが それは一階述語論理上の理論として構築できる二階述語論理であり 当然ながら範疇性は成立しない 二階述語論理は綺麗だが、人間には扱えず不便 これが現実 綺麗ごとをやたらと喜ぶのは 自分では何も考えず何もしない素人だけ http://rio2016.5ch.net/test/read.cgi/math/1755784703/680
683: 132人目の素数さん [] 2025/09/02(火) 17:26:29.28 ID:SkBP9bZ4 >>678 補足 >>306より 日常の数学の下にカジュアル集合論があり、その下に 公理的集合論がある 三階建で、3階が日常の数学、2階がカジュアル集合論、1階が公理的集合論だ それで、3階の日常の数学で 何か無限操作を考えるとき それを 2階のカジュアル集合論 なり 1階の公理的集合論に翻訳できれば いい (元は、カジュアル集合論は 素朴集合論だったが 語感が悪いので変えた) (参考) https://ja.wikipedia.org/wiki/%E4%BA%8C%E9%9A%8E%E8%BF%B0%E8%AA%9E%E8%AB%96%E7%90%86 二階述語論理 二階論理とメタ論理学の成果 ゲーデルの不完全性定理の系の1つとして、以下の3つの属性を同時に満足するような二階述語論理の推論体系は存在しないとされた[4]。 ・(健全性)証明可能な二階述語論理の文は常に真である。すなわち standard semantics に従ったあらゆるドメインで真である。 ・(完全性)standard semantics において常に妥当な二階述語論理の論理式は、全て証明可能である。 ・(実効性)与えられた論理式の並びが妥当な証明かどうかを正しく決定できる証明検証アルゴリズムが存在する。 この系を言い換えると、二階述語論理は完全な証明理論に従わない、とも言える。この観点で、standard semantics を伴った二階述語論理は一階述語論理とは異なり、そのせいもあって論理学者は長年、二階述語論理に関わることを避けてきた。ウィラード・ヴァン・オーマン・クワインは二階述語論理は「論理」ではないと考える理由としてこれを挙げている[5]。 上述のように Henkin は Henkin semantics を使えば二階述語論理に一階述語論理の標準的な健全で完全で実効的な推論体系を適用できることを証明した。 https://ja.wikipedia.org/wiki/%E3%82%B2%E3%83%BC%E3%83%87%E3%83%AB%E3%81%AE%E5%8A%A0%E9%80%9F%E5%AE%9A%E7%90%86 ゲーデルの加速定理 弱い形式的体系では非常に長い形式的証明しか存在しないが、より強い形式的体系では極めて短い形式的証明が存在する、というような文が存在する。より正確にいえば、それはn階算術の体系で証明可能な命題であって、n+1階算術ではより短い証明を持つものが存在するというものである。 (引用終り) 要するに、いまどき 複雑化した 21世紀 現代数学を まともに全部を 1階の公理的集合論で数学を する人はいない (一部にフォーマルな1階論理が向いている議論があるとしても) カジュアル集合論や圏論をまじえて 日常の数学が遂行されている気がする http://rio2016.5ch.net/test/read.cgi/math/1755784703/683
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s