Inter-universal geometry と ABC予想 (応援スレ) 74 (976レス)
Inter-universal geometry と ABC予想 (応援スレ) 74 http://rio2016.5ch.net/test/read.cgi/math/1755784703/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
485: 132人目の素数さん [] 2025/08/30(土) 06:54:20.89 ID:jE3Cs7nW >>484 話は真逆だよ わざわざそこを引用した意図は真逆 >>483より https://pc1.math.gakushuin.ac.jp/~kawasaki/HTML-isou-nyuumon-enshuu/16isou-nyuumon-text.pdf 位相入門 川崎徹郎2016 より P3 1 集合と写像(復習) 集合AとBの合併集合は A∪B={x|x∈Aまたはx∈B} AとBとの共通部分は集合 A∩B={x|x∈Aかつx∈B} このように、∪と∩とを 2項演算として定義しているよ そのうえで、 P9 1.4 列,集合の列 において Aの元の列(無限列)を定義する そして 集合の無限列の共通部分と合併集合とを定義している そして、P11で 「集合の議論では無限個のものの合併や共通部分が、 極限の操作を経ずに、いっぺんに定まる。 無限個の集合の合併や共通部分を、 有限個の集合の合併や共通部分の極限として扱うことは無理があり、 正しくない結論を導くことがある。」とするのです 同様の例が、下記「極限 (圏論)」(下記)だ 下記でも、”極限の操作を経ずに、いっぺんに定まる” の呪文を百回音読しないと これを理解することは できない■ (参考) https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90_(%E5%9C%8F%E8%AB%96) 極限 (圏論) 圏論において、極限とは積や引き戻しや逆極限といった普遍的な構成たちの根底にある性質を捉えた抽象概念である。双対的に余極限とは非交和、直和、余積、押し出し(英語版)、直極限のような構成を一般化したものである。 極限と余極限は、強く関連した概念である普遍性や随伴関手と同様に、高度に抽象化された存在である。これらを理解するために、一般化される前の特定の概念を先に学ぶのがよい。 http://rio2016.5ch.net/test/read.cgi/math/1755784703/485
487: 132人目の素数さん [] 2025/08/30(土) 06:59:40.50 ID:jE3Cs7nW <補足> 要するに、”極限”は 数学の無限の対象に対して 19世紀のその時代の数学者たちが考えた概念だが 20世紀において、”極限”の概念は いろんな分野で 現代化された 一つは、集合論の分野であり 一つは、圏論の分野である そして、いま21世紀■ http://rio2016.5ch.net/test/read.cgi/math/1755784703/487
492: 132人目の素数さん [] 2025/08/30(土) 08:03:08.02 ID:jE3Cs7nW >>427 補足 まず、川崎 徹郎先生の経歴 1971年東京大学入学数学科 1976年ジョンズホプキンス大学大学院, 数学研究科 2020年 川崎ゼミ最終報告 (学習院) だから、1952年生まれか 研究キーワード :極小曲面 曲面 なので、位相空間論の演習担当なのかな (参考) https://researchmap.jp/read0049674 川崎 徹郎 カワサキ テツロウ (Tetsuro Kawasaki) 学歴 4 - 1976年ジョンズホプキンス大学大学院, 数学研究科, 数学 - 1976年The Johns Hopkins U., Graduate School, Division of Mathematics, Mathematics - 1971年東京大学, 理学部, 数学科 - 1971年東京大学 https://pc1.math.gakushuin.ac.jp/~kawasaki/ 川崎研究室文庫 1. 2020年 川崎ゼミ最終報告 : 川?アゼミで取り上げた3重周期的極小曲面に関する報告です。 http://rio2016.5ch.net/test/read.cgi/math/1755784703/492
493: 132人目の素数さん [] 2025/08/30(土) 08:27:30.26 ID:jE3Cs7nW >>491 >そもそも極限を考えるには距離が定義されてないとダメなんだが、集合間の距離をどう定義するの? "ひろゆき名言「それってあなたの感想ですよね」"(下記) なお、君は勉強不足 下記 フィルター (filter) とネット(有向点族)を、百回音読してね 距離が定義されていない空間での 極限・収束を扱える■ (参考) https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A3%E3%83%AB%E3%82%BF%E3%83%BC_(%E6%95%B0%E5%AD%A6) フィルター (filter) とは半順序集合の特別な部分集合のことである。実際には半順序集合として、特定の集合の冪集合に包含関係で順序を入れた物が考察されることが多い。フィルターが初めて用いられたのは一般位相幾何学の研究であったが、現在では順序理論や束の理論でも用いられている。順序理論的な意味でのフィルターの双対概念はイデアル(英語版)である。 類似の概念として1922年にエリアキム・H・ムーアと H. L. スミスによって導入されたネットの概念がある。 例 超積 超積は超準解析の最も簡単なモデルを与えている 位相幾何学におけるフィルター 位相幾何学や解析学において、距離空間での点列の収束の類似として、一般的な収束の概念を定式化するためにフィルターが用いられる。 位相空間論の諸結果は次のように全てフィルターを用いた議論に言い換えられる: 1.X 上の任意のフィルターの極限が高々一つ(つまり、多くても一つの点にしか収束していない)のとき、およびそのときに限って X はハウスドルフ空間になる。 https://ja.wikipedia.org/wiki/%E6%9C%89%E5%90%91%E7%82%B9%E6%97%8F 有向点族(ネット (net)) 有向点族とその極限 有向点族とその収束の定義は点列とその収束性の定義を自然に有向集合の場合に拡張する事で得られる。 例 ・(実数値関数の極限) 同様に実変数関数の極限limx→∞ f(x)も、有向点族 (f(x))x∈Rの極限ととらえる事ができる。 ・(リーマン和) リーマン積分の定義におけるリーマン和も有向点列の極限とみなせる。この例において考える有向集合は、積分区間の全ての分割が成す集合に包含関係が定める順序で向きを入れたものである。リーマン=スティルチェス積分においても同様のことを考えることができる。 >>453再録 ひろゆき氏、名言「それってあなたの感想ですよね」 https://www.sanspo.com/article/20240513-MVSJEG4GAJGYNALSNLHLBTSMBA/ サンスポ ひろゆき氏、名言「それってあなたの感想ですよね」を発した理由 2024/05/13 http://rio2016.5ch.net/test/read.cgi/math/1755784703/493
494: 132人目の素数さん [] 2025/08/30(土) 08:42:03.97 ID:jE3Cs7nW >>485 補足 さて、少し補足しておくと 集合AとBの合併集合は A∪B={x|x∈Aまたはx∈B} AとBとの共通部分は集合 A∩B={x|x∈Aかつx∈B} このように、∪と∩とを 2項演算として定義している ここで、有限個 A1,A2,・・・,An の合併集合や共通部分は、2項演算の有限の繰返しで実現できる では、無限の合併集合や共通部分は どうするの? 川崎徹郎先生は、まず 集合の列 Aの元の列(無限列)を定義する つまり、無限のAの元の列を作って それに 一気に 合併集合や共通部分 を定義する 極限だの へったくれだのを言うなと P11で 「集合の議論では無限個のものの合併や共通部分が、 極限の操作を経ずに、いっぺんに定まる。 無限個の集合の合併や共通部分を、 有限個の集合の合併や共通部分の極限として扱うことは無理があり、 正しくない結論を導くことがある。」とするのです これで 終わり なお、ここの 川崎徹郎先生の議論は 完全には公理的集合論ではない 公理的集合論には違背しない範囲で 実用的な(日常的な)集合論を提供している なぜならば、厳格な公理的集合論までもどると 余計理解が難しくなる だから、普段は実用的な(日常的な)集合論で考えて良い 位相空間論では 厳格な公理的集合論までもどらない方が良い■ http://rio2016.5ch.net/test/read.cgi/math/1755784703/494
500: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/30(土) 09:56:01.82 ID:jE3Cs7nW >>119 戻る (引用開始) 1) https://ufcpp.net/study/math/set/natural/ Copyright Nobuyuki Iwanaga since 2000 ++C++; // 未確認飛行 C について 自然数の定義 まず、何でもいいので1つ無限集合 a を選びます。 また、「x は無限集合である」という命題を M(x) とし、 以下のような集合 a^ を作ります。 a^ = {x ∈P(a) | M(x)} P (a) は a の「冪集合」です。 すなわち、a^ は a の部分集合のうち、無限集合になるようなもの全てを集めた集合です。 そして、a^ の全ての元の共通部分を取ります。 ωa = ∩a^ 証明は省きますが、このようにして得られた無限集合 ωa は、 元の無限集合 a のとり方によらずただ1つに定まります。 略す 2) https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 自然数の集合論的構成 N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]} ここでAは無限公理により存在する集合を任意に選んだものである (引用終り) この ペアノの公理らにおいて 自然数で 集合積∩を使う点を >>485 位相入門 川崎徹郎2016 の立場から批判する まず 下記無限公理の”無限集合Iから自然数を抽出する”において 『おおざっぱに言うとすべての帰納的な集合の共通部分をとりたいわけである』 とあって、”無限公理と分出公理を使って証明”している この場合は、無限集合Iの具体的な性質として ”Iは 帰納的な(無限集合N(自然数))集合を含む” という無限公理から N(自然数)を 分出公理を取り出している で、上記 集合積∩を使う問題点を >>485 位相入門 川崎徹郎2016 の立場からは 集合積∩を使うには、集合の無限列が必要なのだ いま、下記無限公理に規定された無限集合として 非可算の集合I(つまり上記ペアノの公理ではA) を取ると、この集合積∩を使う集合の無限列は、非可算の長さの列になるだろう つまり、ZFC公理系のごく最初の部分で さあ いまから最初の可算集合N(自然数)を定義しようとするにあたって 非可算の集合積∩を使うのは、いかにも大袈裟でまずいってことだ 分出公理で簡単に済む話に わざわざ 集合積∩ね 繰り返すが 『おおざっぱに言うとすべての帰納的な集合の共通部分をとりたい』 なのだが それに とらわれて集合積∩を使うのは まずい■ (参考) https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86 無限公理 定義 集合を構築する記法を用いた場合は ∃I(∅∈I∧∀x(x∈I⇒(x∪{x})∈I)). である つづく http://rio2016.5ch.net/test/read.cgi/math/1755784703/500
501: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/30(土) 09:56:26.14 ID:jE3Cs7nW つづき 一部の数学者はこのような方法で構築された集合をinductive set(英語: inductive set)と呼ぶ。 自然言語でこの公理を記述すると、「集合𝐈で、𝐈は空集合を要素にもち、任意の𝐈の要素 xに対して、x自身とxの各要素を要素とする𝐈の要素yが存在するような集合𝐈が存在する」となる。 無限集合Iから自然数を抽出する 他の方法 以下のような他の方法もある。 Φ(x)を「xは帰納的である」という論理式とする。つまり、 Φ(x)=(∅∈x∧∀y(y∈x→(y∪{y}∈x))) とする。おおざっぱに言うとすべての帰納的な集合の共通部分をとりたいわけである。 これを形式的に書くと、次のような集合 Wが一意に存在することを示したい。 ∀x(x∈W↔∀I(Φ(I)→x∈I)) (*) 存在については、無限公理と分出公理を使って証明する。 Iを無限公理によって保証された帰納的集合とする。分出公理を使って集合 W={x∈I:∀J(Φ(J)→x∈J)}を取り出す。つまり WはIの要素のうち、あらゆる帰納的集合に含まれているものを集めてきた集合である。 明らかに(*)を満たす。なぜなら、 x∈Wと仮定すると、 xはすべての帰納的集合に含まれているし、 xがすべての帰納的集合に含まれているとすると、もちろん Iにも含まれているから、 Wにも含まれている。 一意性については、(*)を満たす集合はそれ自体帰納的集合であることに注意する。なぜなら、0はすべての帰納的集合に含まれているし、xがすべての帰納的集合に含まれているとすると、その後続もすべての帰納的集合に含まれている。よって W′を別の帰納的集合とすると、 Wが帰納的であるため W′⊆Wが成り立ち、 W′が帰納的であることから W⊆W′も成り立つ。よって W=W′。この集合をωと書く。 この定義は数学的帰納法を容易に導けるため便利である (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1755784703/501
502: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/30(土) 09:59:48.16 ID:jE3Cs7nW >>500 タイポ訂正 という無限公理から N(自然数)を 分出公理を取り出している ↓ という無限公理から N(自然数)を 分出公理で取り出している http://rio2016.5ch.net/test/read.cgi/math/1755784703/502
505: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/30(土) 10:12:43.95 ID:jE3Cs7nW >>499 >∪XはXの元すべての合併。Xが無限集合なら∪Xは無限合併。 >お馬鹿さんは二項合併A∪Bしか知らん高卒オチコボレ。 >因みに任意の集合A,Bに対して対の公理により{A,B}が存在し、A∪B=∪{A,B}。 ふっふ、ほっほ では問う 可算無限集合族 A1,A2,A3,・・に対して ∩An を ZFC公理で定義せよ さらに、非可算無限族に対して ∩Aλ (λは非可算添え字)を定義せよ http://rio2016.5ch.net/test/read.cgi/math/1755784703/505
510: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/30(土) 10:28:16.00 ID:jE3Cs7nW ふっふ、ほっほ 「アホな同僚や相手に構うことほど、人生ムダなことはないよね」 by レトリカ・ブログ (学院長 川上貴裕) 百回音読しましょう!w ;p) (参考) https://note.com/dcrg7mgm/n/n3eeb06fd35d0 アホな同僚や相手に構うことほど、人生ムダなことはないよね。 レトリカ・ブログ (学院長 川上貴裕) 2024年11月2日 どうしようもない人(以下、アホ)に限って、「どういうメンタルしているんだ?」、「なんでこんなやつが正規で受かってるんだ!」と思うほど、平然とした顔で、のさばり続けているのですよね。 世の中、理不尽なことばかりです。 略す 上記のように嫌みをこぼす、アホな同僚が、おそらく、皆さんの周りにもいることでしょう。 でも、こんな愚かなアホのせいで、自分の心が疲弊したり、病んだり、最悪の場合、教職を諦めてしまうことになることほど、理不尽なことはありませんよね。 では、こんなアホには、どう対抗すればいいのか。 いえいえ、今日はそんな話ではないのです。 マザーテレサの名言に、 「愛の反対は、憎しみではなく、無関心です。」 という言葉があります。 まさにその通りです。 アホに対して、憎しみをもったり、エネルギーを費やしたり、感情的になったり、帰宅後も脳裏に思い出したりすることほど、人生を無駄にしていることはないのです。 略す また、田村耕太郎さんの『頭に来てもアホとは戦うな!』という書籍も、おすすめです!ぜひ、読まれてみてください! http://rio2016.5ch.net/test/read.cgi/math/1755784703/510
513: 132人目の素数さん [] 2025/08/30(土) 11:14:02.00 ID:jE3Cs7nW ふっふ、ほっほ 悔しいのう http://rio2016.5ch.net/test/read.cgi/math/1755784703/513
518: 132人目の素数さん [] 2025/08/30(土) 16:13:03.47 ID:jE3Cs7nW >>515 (引用開始) p10 M1, M2, . . . を集合の列とする。 すなわち,各 i ∈ N に対して,集合 Mi が定まっているものとする。 そのときすべての Mi の共通集合が ∩(i=1〜∞)Mi = {m | ∀i∈N.m ∈ Mi(すべての i に対して m ∈ Mi)} によって定義される。 同様に,すべての Mi の合併集合は ∪(i=1〜∞)Mi = {m | ∃i∈N.m ∈ Mi(ある i に対して m ∈ Mi)} により定義される。 ∩(i=1〜∞)Mi の代わりに∩(n∈N)Mn または,単に ∩(n)Mnもよく用いられる。 これに似た記号は有限個の集合の列の共通集合,合併集合に対しても使われる。 (引用終り) ご高説は賜った では、上記 その川崎徹郎氏の ”∩(i=1〜∞)Mi = {m | ∀i∈N.m ∈ Mi(すべての i に対して m ∈ Mi)}” を適用して、下記 >>500 より https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 自然数の集合論的構成 N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]} ここでAは無限公理により存在する集合を任意に選んだものである https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86 無限公理 定義 集合を構築する記法を用いた場合は ∃I(∅∈I∧∀x(x∈I⇒(x∪{x})∈I)). である (引用終り) ここで、「Aは無限公理により存在する集合を任意に選んだものである」として 1)Aが 可算無限集合の場合(そのような集合を一つ選べ) 2)Aが アレフ・ワン 非可算無限集合の場合(そのような集合を一つ選べ) この二つの場合について 「N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}」 の証明を書け!!ww https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AC%E3%83%95%E6%95%B0 アレフ数 アレフ数(アレフすう、英: aleph number)は無限集合の濃度(あるいは大きさ)を表現するために使われる順序数のクラスである。 アレフ・ワン →「最小の非可算順序数」も参照 ℵ1 はすべての可算順序数からなる集合の濃度で、ω1 あるいは(ときに)Ω と呼ばれる。この ω1 はそれ自身順序数でありすべての可算順序数より大きく、したがって不可算集合である http://rio2016.5ch.net/test/read.cgi/math/1755784703/518
524: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/30(土) 16:36:09.71 ID:jE3Cs7nW >>468 戻る (引用開始) 形式的冪級数環R[[x]]を、どうメンタルピクチャー(>>8 加藤文元)として とらえるか? それは各人自由だが 『形式冪級数は収束の概念とは独立して考えられる無限和』(下記) と考えるのも ”あり”だろう https://en.wikipedia.org/wiki/Formal_power_series Formal power series (google訳) 形式冪級数 形式冪級数は収束の概念とは独立して考えられる無限和であり、級数に対する通常の代数演算(加算、減算、乗算、除算、部分和など)で操作することができます。 A formal power series with coefficients in a ring R is called a formal power series over R. The formal power series over a ring R form a ring, commonly denoted by R[[x]]. (It can be seen as the (x)-adic completion of the polynomial ring R[x], in the same way as the p-adic integers are the p-adic completion of the ring of the integers.) 環R上の係数を持つ形式的な冪級数Rは、R環上の形式的冪級数環を形成する。 環R上の形式的冪級数は、一般的にはR[[×]]と書かれる。 (これは多項式環R[×]の(x)進完備化として見ることができる、p進整数が整数環のp進完備化であるのと同じです) (引用終り) 形式冪級数 Σ_n=0〜∞ an X^n=a0+a1X+a2X^2+・・・ ここで >>483 川崎徹郎流 で 可算無限列 a0, a1X, a2X^2, ・・・ を構成して 間に和の記号 + を挿入 ”極限の操作を経ずに、いっぺんに定まる”>>483 で ”Σ_n=0〜∞ an X^n=a0+a1X+a2X^2+・・・” を考えれば良いだけのことよ■ http://rio2016.5ch.net/test/read.cgi/math/1755784703/524
526: 132人目の素数さん [] 2025/08/30(土) 16:40:32.36 ID:jE3Cs7nW >>525 ご苦労さまです 私は アホは 適当にあしらいます ですw ;p) http://rio2016.5ch.net/test/read.cgi/math/1755784703/526
531: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/30(土) 16:54:17.25 ID:jE3Cs7nW >>522 (引用開始) Aの濃度に関係なく、無限公理を満たせばいい まあ、Aは極限順序数でしょうね でもなんであれ共通集合をとるので、 結局、最小の極限順序数になりますね (引用終り) いや別にそれは否定していない というか、そもそも カントールの無限集合がそれで カントールの無限集合を 公理的に構築しようということだから それは結論なわけで、答えを知っているんだ 問題は、その答えを先取りしては行けないってこと 自然数N=ω これが 無限集合たちの最小で 全ての無限集合に含まれている それは、結論なわけ だが、結論を先に使うと 公理的な視点では 循環論法で いまは、その結論を使わずに 下記 無限公理の 無限集合Iから自然数を抽出する の如く ∩を使わずに済ます方が 公理による自然数N=ωの構築として 圧倒的に スマートで美しいってこと https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86 無限公理 無限集合Iから自然数を抽出する 他の方法 以下のような他の方法もある。 Φ(x)を「xは帰納的である」という論理式とする。つまり、 Φ(x)=(∅∈x∧∀y(y∈x→(y∪{y}∈x))) とする。おおざっぱに言うとすべての帰納的な集合の共通部分をとりたいわけである。 これを形式的に書くと、次のような集合 Wが一意に存在することを示したい。 ∀x(x∈W↔∀I(Φ(I)→x∈I)) (*) 存在については、無限公理と分出公理を使って証明する。 Iを無限公理によって保証された帰納的集合とする。分出公理を使って集合 W={x∈I:∀J(Φ(J)→x∈J)}を取り出す。つまり WはIの要素のうち、あらゆる帰納的集合に含まれているものを集めてきた集合である。 明らかに(*)を満たす。 以下略 http://rio2016.5ch.net/test/read.cgi/math/1755784703/531
539: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/30(土) 20:48:08.86 ID:jE3Cs7nW >>531 補足 >>518 より https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 自然数の集合論的構成 N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]} ここでAは無限公理により存在する集合を任意に選んだものである https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86 無限公理 定義 集合を構築する記法を用いた場合は ∃I(∅∈I∧∀x(x∈I⇒(x∪{x})∈I)). である (引用終り) 補足するよ 下記の 順序数 での 無限集合部分を使う 名前を付ける S0=ω, S1=S(ω), S2= S(S(ω)), S3=S(S(S(ω))), ・ ・ Sn=S(Sn-1), ここで、Peano axioms en.wikipedia 訳で ”各自然数は、それより小さい自然数の集合と(集合として)等しくなります” に注目しよう。これは、無限順序数でも成り立つ いま、S3=S(S(S(ω)))={0,1,2,・・・,ω,S(ω),S(S(ω))} となる そこで、上記”N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”において A=S3=S(S(S(ω)))={0,1,2,・・・,ω,S(ω),S(S(ω))} としよう すると ”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”が Aにおける 無限集合の積と解釈できるとして(要証明事項) ∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}=ω∩S(ω)∩S(S(ω)) と書ける ここで、ω∩S(ω)∩S(S(ω))=ω は簡単に分ること 同様のことが、任意nのSnで言えるだろう(数学的帰納法でも使えば) さて、問題は順序数 での 無限集合という素性の知れた集合だから簡単に言えることだが 無限公理の主張に戻ると、無限公理は 有限の帰納的に生成される集合全てを含む なにか無限集合Iの存在を主張するものである 無限集合Iで分っていることは、”有限の帰納的に生成される集合全てを含む”だけ だから、素直に 無限集合Iから ”有限の帰納的に生成される集合全てを含む”を取り出す式を書けば良いだけと 単純に考えることができる 集合積∩を使う問題点は、上記のように 無限集合Iの大きさと具体的な構成に依存して 式 ”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”が変わってしまうこと (なお、無限集合Iは、順序数に限定されない) 結論として、”ωが最小の無限集合で、全ての無限集合の共通部分”は分っていることだから いずれ 手間を掛ければ その結論には達するが 無限集合Iの大きさと その具体的な構成に依存する式を使うと 話が 大袈裟になるってことだ■ つづく http://rio2016.5ch.net/test/read.cgi/math/1755784703/539
540: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/30(土) 20:48:43.44 ID:jE3Cs7nW つづき (参考) https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数 順序数の大小関係 3.α が順序数のとき、S(α) ≔ α ∪ { α } は α より大きな順序数のうちで最小のものである。S(α) を α の後続者 (successor of α)と呼ぶ。 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), .............................. https://en.wikipedia.org/wiki/Peano_axioms Peano axioms (google訳) 集合論的モデル ペアノの公理は、自然数の集合論的構成やZFなどの集合論の公理から導くことができる。[ 15 ]ジョン・フォン・ノイマンによる自然数の標準的な構成は、0を空集合∅として定義し、次のように定義された集合上の 演算子sから始まる。 s(a)=a∪{a} 自然数Nの集合は、空集合を含むsで閉じたすべての集合の共通部分として定義されます。 各自然数は、それより小さい自然数の集合と(集合として)等しくなります。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1755784703/540
543: 132人目の素数さん [] 2025/08/30(土) 22:38:22.70 ID:jE3Cs7nW >>531 補足 >>518 より https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 自然数の集合論的構成 N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]} ここでAは無限公理により存在する集合を任意に選んだものである https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86 無限公理 定義 集合を構築する記法を用いた場合は ∃I(∅∈I∧∀x(x∈I⇒(x∪{x})∈I)). である (引用終り) 補足するよ 下記の 順序数 での 無限集合部分を使う 名前を付ける S0=ω, S1=S(ω), S2= S(S(ω)), S3=S(S(S(ω))), ・ ・ Sn=S(Sn-1), ここで、Peano axioms en.wikipedia 訳で ”各自然数は、それより小さい自然数の集合と(集合として)等しくなります” に注目しよう。これは、無限順序数でも成り立つ いま、S3=S(S(S(ω)))={0,1,2,・・・,ω,S(ω),S(S(ω))} となる そこで、上記”N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”において A=S3=S(S(S(ω)))={0,1,2,・・・,ω,S(ω),S(S(ω))} としよう すると ”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”が Aにおける 無限集合の積と解釈できるとして(要証明事項) ∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}=ω∩S(ω)∩S(S(ω)) と書ける ここで、ω∩S(ω)∩S(S(ω))=ω は簡単に分ること 同様のことが、任意nのSnで言えるだろう(数学的帰納法でも使えば) さて、問題は順序数 での 無限集合という素性の知れた集合だから簡単に言えることだが 無限公理の主張に戻ると、無限公理は 有限の帰納的に生成される集合全てを含む なにか無限集合Iの存在を主張するものである 無限集合Iで分っていることは、”有限の帰納的に生成される集合全てを含む”だけ だから、素直に 無限集合Iから ”有限の帰納的に生成される集合全てを含む”を取り出す式を書けば良いだけと 単純に考えることができる 集合積∩を使う問題点は、上記のように 無限集合Iの大きさと具体的な構成に依存して 式 ”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”が変わってしまうこと (なお、無限集合Iは、順序数に限定されない) 結論として、”ωが最小の無限集合で、全ての無限集合の共通部分”は分っていることだから いずれ 手間を掛ければ その結論には達するが 無限集合Iの大きさと その具体的な構成に依存する式を使うと 話が 大袈裟になるってことだ■ つづく >>538 >https://hayabusa9.5ch.net/test/read.cgi/news/1756548285/ おや? 独教授「ABC予想の証明論文は論理に飛躍がある」 望月教授「それはお前がクソ無能だからだ」 [886559449] か それ ニュース速報板だね 情報ありがとう http://rio2016.5ch.net/test/read.cgi/math/1755784703/543
544: 132人目の素数さん [] 2025/08/30(土) 22:40:46.27 ID:jE3Cs7nW >>543 訂正再投稿 >>538 >https://hayabusa9.5ch.net/test/read.cgi/news/1756548285/ おや? 独教授「ABC予想の証明論文は論理に飛躍がある」 望月教授「それはお前がクソ無能だからだ」 [886559449] か それ ニュース速報板だね 情報ありがとう http://rio2016.5ch.net/test/read.cgi/math/1755784703/544
545: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/30(土) 22:43:52.76 ID:jE3Cs7nW >>541-542 ふっふ、ほっほ 「アホな同僚や相手に構うことほど、人生ムダなことはないよね」 by レトリカ・ブログ (学院長 川上貴裕) 百回音読しましょう!w ;p) (参考) https://note.com/dcrg7mgm/n/n3eeb06fd35d0 アホな同僚や相手に構うことほど、人生ムダなことはないよね。 レトリカ・ブログ (学院長 川上貴裕) 2024年11月2日 どうしようもない人(以下、アホ)に限って、「どういうメンタルしているんだ?」、「なんでこんなやつが正規で受かってるんだ!」と思うほど、平然とした顔で、のさばり続けているのですよね。 世の中、理不尽なことばかりです。 略す 上記のように嫌みをこぼす、アホな同僚が、おそらく、皆さんの周りにもいることでしょう。 でも、こんな愚かなアホのせいで、自分の心が疲弊したり、病んだり、最悪の場合、教職を諦めてしまうことになることほど、理不尽なことはありませんよね。 では、こんなアホには、どう対抗すればいいのか。 いえいえ、今日はそんな話ではないのです。 マザーテレサの名言に、 「愛の反対は、憎しみではなく、無関心です。」 という言葉があります。 まさにその通りです。 アホに対して、憎しみをもったり、エネルギーを費やしたり、感情的になったり、帰宅後も脳裏に思い出したりすることほど、人生を無駄にしていることはないのです。 略す また、田村耕太郎さんの『頭に来てもアホとは戦うな!』という書籍も、おすすめです!ぜひ、読まれてみてください! http://rio2016.5ch.net/test/read.cgi/math/1755784703/545
547: 132人目の素数さん [] 2025/08/30(土) 23:04:16.32 ID:jE3Cs7nW >>542 (引用開始) >”ωが最小の無限集合で、全ての無限集合の共通部分”は分っていることだから だから大間違いって言ってるんだけど、言葉が通じないの? 言語障害? 偶数全体の集合と奇数全体の集合の共通部分は{}であってωではない。 (引用終り) なるほど それ面白いから カマッテクンしておくと デデキント無限 の話だね 選択公理を仮定すると 自然数N=ω には、 下記「A と同数(equinumerous)であるようなA の真部分集合B が存在することである」 だね。だから、”このような場合(等濃真部分集合)を除外して”という条件が入るだろう https://ja.wikipedia.org/wiki/%E3%83%87%E3%83%87%E3%82%AD%E3%83%B3%E3%83%88%E7%84%A1%E9%99%90 デデキント無限 集合A がデデキント無限(Dedekind-infinite)である、またはデデキント無限集合であるとは、A と同数(equinumerous)であるようなA の真部分集合B が存在することである。つまり、A とA の真部分集合B の間に全単射が存在するということである。集合 A がデデキント無限でないとき、デデキント有限であるいう。 デデキント無限は、自然数を用いないような最初の無限の定義である。選択公理を除いたツェルメロ・フレンケルの公理系は、任意のデデキント有限集合は有限個の元を持つという意味での有限である、ということを証明するだけの強さを持たない[1]。 通常の無限集合の定義との比較 デデキントの意味での“無限集合”は、普通の意味での無限集合と比較されるべきであろう: 集合A が無限であるとは、どのような自然数 n に対しても、{0,1,2,..., n -1}(有限順序数)と A との間に全単射が存在しないことである。 無限とは、全単射が存在しないという意味で文字通り有限でないという集合である。 19世紀後半、多くの数学者はデデキント無限であることと通常の意味の無限は同値であると単純に考えていた。しかし実際は、選択公理(“AC”)を除いたツェルメロ・フレンケルの公理系(通常、“ZF”と表記される)からは、その同値性は証明されえない。弱いACを使うことで証明でき、フルの強さは要求されない。その同値性は、可算選択公理(“CC”)より真に弱い形で証明できる。 選択公理との関係 整列可能な任意の無限集合はデデキント無限である。ACは任意の集合が整列可能であることを述べた整列可能定理と同値であるから、ACから無限集合はデデキント無限集合であるということが簡単に導かれる。しかしながら、無限とデデキント無限の同値性はACよりもっと弱いものである。すなわちこの同値性を仮定してもACは導かれない。 可算選択公理を仮定した無限との同値性の証明 デデキント無限集合が無限であることはZFで容易に証明される。実際、任意の有限集合はある有限順序数と等濃であって、有限順序数がデデキント有限であることは帰納法により証明できる。 可算選択公理を用いることによって、その逆が証明できる。つまり、無限集合はデデキント無限であることを以下のように証明できる[2]。 略す http://rio2016.5ch.net/test/read.cgi/math/1755784703/547
548: 132人目の素数さん [] 2025/08/30(土) 23:14:59.75 ID:jE3Cs7nW >>542 >偶数全体の集合と奇数全体の集合の共通部分は{}であってωではない。 それ面白いから カマッテクンしておくと そういう 無限集合の真部分集合で等濃無限を考え出すと 共通部分∩の議論が ますます 複雑怪奇になるだけ 式 N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}の扱いが ますます難しくなる 自分で自分の足を打っているに等しいw ;p) http://rio2016.5ch.net/test/read.cgi/math/1755784703/548
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
2.543s*