Inter-universal geometry と ABC予想 (応援スレ) 74 (973レス)
Inter-universal geometry と ABC予想 (応援スレ) 74 http://rio2016.5ch.net/test/read.cgi/math/1755784703/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
677: 132人目の素数さん [] 2025/09/02(火) 14:35:24.84 ID:SkBP9bZ4 >>671 >実数論では、連続性(完備性)を満たすように定義しただけで >パラドックスを解決した、というよりは、回避したというのが正しい まあ、そうかもしれないが、一般的な 位相空間の完備距離空間や、完備化 (環論)などにつながった(下記) https://ja.wikipedia.org/wiki/%E5%AE%8C%E5%82%99%E8%B7%9D%E9%9B%A2%E7%A9%BA%E9%96%93 完備距離空間 M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う https://ja.wikipedia.org/wiki/%E5%AE%8C%E5%82%99%E6%80%A7 完備性(かんびせい、英: completeness)は、様々な場面においてそれぞれの対象に関して特定の意味を以って考えられ、またそれぞれの意味において完備(かんび、英: complete)でない対象に対する完備化 (completion) と呼ばれる操作を考えることができる。complete は「完全」と訳されることもある ・実数の完備性: ・完備距離空間: ・完備測度空間: ・環の完備化: https://ja.wikipedia.org/wiki/%E5%AE%8C%E5%82%99%E5%8C%96_(%E7%92%B0%E8%AB%96) 完備化 (環論) 完備化は商環の逆極限である。 クルル位相 R^I=lim ←(R/In) (「アールアイハット」と読む。文脈から I が明らかなときには単に R^ と書くこともある。) R-加群にも同様の位相があり、これもクルル位相や I-進位相と呼ばれる (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1755784703/677
678: 132人目の素数さん [] 2025/09/02(火) 14:35:41.82 ID:SkBP9bZ4 つづき >「{}に0,1,2,・・・を順次追加していき、無限回の追加が完了してNが出来上がる」 >とはなっていないことは、ペアノの公理を一階述語論理上で形式化した場合に >超準的自然数を持つモデルが生じてしまうことからも明らかである そうですな ここで重要ポイントは、一階述語論理は 綺麗だが 弱くて不便 普段の数学は、一階述語論理しばりは うれしくないってことですね https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 公理 この公理は、数学的帰納法の原理である[注釈 3]。 これらの公理は互いに独立であり、いずれも残りから導くことはできない[5]。 注釈3 ^ 任意の部分集合に関する量化を行っているので、これは一階述語論理では形式化できない。 範疇性 集合 ℕ^ と定数 0^ と関数 S^ がペアノの公理を満たすとき組 (ℕ^, 0^, S^) をペアノ構造(Peano structure)という。ペアノ構造は同型を除いてただ一つに定まる[注 1]、つまりペアノの公理は範疇的(categorical)であることがわかる。 一方で後述するペアノ算術はレーヴェンハイム=スコーレムの定理から超準モデルをもつので範疇的ではない。 注釈1 ^ すなわち全単射 φ: ℕ → ℕ^ で φ(0) = 0^ かつ φ ∘ S = S^ ∘ φ を満たすものが存在する。 https://en.wikipedia.org/wiki/Peano_axioms Peano axioms (google訳) 次の3つの公理は、自然数に関する一階の命題であり、後続演算の基本的な性質を表現する。9番目の最後の公理は、自然数に対する数学的帰納法の原理に関する二階の命題であり、この定式化は二階算術に近い。 https://en.wikipedia.org/wiki/Second-order_logic Second-order logic (google訳) 表現力 二階述語論理は一階述語論理よりも表現力に富んでいます。例えば、定義域がすべての実数の集合である場合、一階述語論理では、各実数の加法逆数が存在することを次のように主張できます。 略 しかし、実数集合の最小上界性、すなわち、すべての有界かつ空でない実数集合には上限が存在することを主張するには、二階述語論理が必要である 第二階論理では、「定義域は有限である」または「定義域は可算 濃度である」という形式文を書くことができます。 History and disputed value In recent years[when?] second-order logic has made something of a recovery, buoyed by Boolos' interpretation of second-order quantification as plural quantification over the same domain of objects as first-order quantification (Boolos 1984). (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1755784703/678
683: 132人目の素数さん [] 2025/09/02(火) 17:26:29.28 ID:SkBP9bZ4 >>678 補足 >>306より 日常の数学の下にカジュアル集合論があり、その下に 公理的集合論がある 三階建で、3階が日常の数学、2階がカジュアル集合論、1階が公理的集合論だ それで、3階の日常の数学で 何か無限操作を考えるとき それを 2階のカジュアル集合論 なり 1階の公理的集合論に翻訳できれば いい (元は、カジュアル集合論は 素朴集合論だったが 語感が悪いので変えた) (参考) https://ja.wikipedia.org/wiki/%E4%BA%8C%E9%9A%8E%E8%BF%B0%E8%AA%9E%E8%AB%96%E7%90%86 二階述語論理 二階論理とメタ論理学の成果 ゲーデルの不完全性定理の系の1つとして、以下の3つの属性を同時に満足するような二階述語論理の推論体系は存在しないとされた[4]。 ・(健全性)証明可能な二階述語論理の文は常に真である。すなわち standard semantics に従ったあらゆるドメインで真である。 ・(完全性)standard semantics において常に妥当な二階述語論理の論理式は、全て証明可能である。 ・(実効性)与えられた論理式の並びが妥当な証明かどうかを正しく決定できる証明検証アルゴリズムが存在する。 この系を言い換えると、二階述語論理は完全な証明理論に従わない、とも言える。この観点で、standard semantics を伴った二階述語論理は一階述語論理とは異なり、そのせいもあって論理学者は長年、二階述語論理に関わることを避けてきた。ウィラード・ヴァン・オーマン・クワインは二階述語論理は「論理」ではないと考える理由としてこれを挙げている[5]。 上述のように Henkin は Henkin semantics を使えば二階述語論理に一階述語論理の標準的な健全で完全で実効的な推論体系を適用できることを証明した。 https://ja.wikipedia.org/wiki/%E3%82%B2%E3%83%BC%E3%83%87%E3%83%AB%E3%81%AE%E5%8A%A0%E9%80%9F%E5%AE%9A%E7%90%86 ゲーデルの加速定理 弱い形式的体系では非常に長い形式的証明しか存在しないが、より強い形式的体系では極めて短い形式的証明が存在する、というような文が存在する。より正確にいえば、それはn階算術の体系で証明可能な命題であって、n+1階算術ではより短い証明を持つものが存在するというものである。 (引用終り) 要するに、いまどき 複雑化した 21世紀 現代数学を まともに全部を 1階の公理的集合論で数学を する人はいない (一部にフォーマルな1階論理が向いている議論があるとしても) カジュアル集合論や圏論をまじえて 日常の数学が遂行されている気がする http://rio2016.5ch.net/test/read.cgi/math/1755784703/683
686: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/09/02(火) 18:17:26.29 ID:SkBP9bZ4 >>683 >三階建で、3階が日常の数学、2階がカジュアル集合論、1階が公理的集合論だ >>494 より ”ここの 川崎徹郎先生の議論は 完全には公理的集合論ではない 公理的集合論には違背しない範囲で 実用的な(日常的な)集合論を提供している” (参考) >>483より https://pc1.math.gakushuin.ac.jp/~kawasaki/HTML-isou-nyuumon-enshuu/16isou-nyuumon-text.pdf 位相入門 川崎徹郎2016 で、1階の公理的集は だいたい 一階述語論理しばりだが 2階のカジュアル集合論、3階の日常の数学では、一階述語論理しばり なし 自然言語も多用して 図解もありまくりで 数学の議論を進める それが 21世紀の数学じゃないですか? そもそも、いまどきの基礎論の投稿論文でも 一階述語論理しばり では だれも 論文書いていないのでは? (^^ (強制法が 何階述語か知らないが ;p) https://ja.wikipedia.org/wiki/%E5%BC%B7%E5%88%B6%E6%B3%95 強制法 直観的意味合い 直観的には、強制法は集合論の宇宙 V をより大きい宇宙 V* に拡大することから成り立っている。 可算推移モデルとジェネリックフィルター 強制法の鍵となるステップはZFCの宇宙 V に対して、V の要素でない適切な G を見つけることである。 結果としては G によるP-名前の解釈全てによるクラスが元々の V の拡大になるZFCのモデルになるようにする。 http://rio2016.5ch.net/test/read.cgi/math/1755784703/686
687: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/09/02(火) 18:19:48.64 ID:SkBP9bZ4 >>686 タイポ訂正 で、1階の公理的集は だいたい 一階述語論理しばりだが ↓ で、1階の公理的集合論は だいたい 一階述語論理しばりだが http://rio2016.5ch.net/test/read.cgi/math/1755784703/687
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.028s