[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ16 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ16 http://rio2016.5ch.net/test/read.cgi/math/1744899342/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
4: 132人目の素数さん [] 2025/04/17(木) 23:17:10.69 ID:a3KzsPE4 つづき https://www.jstage.jst.go.jp/article/sugaku1947/34/1/34_1_1/_pdf/-char/en 論説 数学 (1981年9月14日提出)*1981年4月5日京都大学における第9回日本数学会彌永賞受賞講演 ソリトン方程式とKac-Moodyリー環 柏原 正樹*神保 道夫 伊達 悦朗 三輪 哲二 §1.序 代数方程式の研究に,解の変換群の概念を導入し,その有効性を示したのはGaloisである.こ のGaloisの視点を,微分方程式に適用する試みの中から,リー群,リー環の概念は生まれた.線 型微分方程式を,この立場で研究するものとして,Picard-Vessiot理論があり,そこに現われる群 は,有限次元Lie群である.有限次元半単純リー環の研究における, Cartan行列を基礎におく理 論構成を一般化して,Kac-Moobyリー環と呼ばれる,無限次元リー環の概念が生まれた([IY 38], [IY 68],[40])1).ほぼ同じ頃,ソリトン理論が,その姿を現わしつつあった.ソリトン理論にあら われる非線型方程式(以下,ソリトン方程式と呼ぶ)は,線型方程式系の可積分条件として表わされ るという側面をもつ.本稿では,ソリトン方程式の解の変換群を考察し,ある種のソリトン方程式 の変換群のリー環として,Euclid型リー環と呼ばれるKac-Moodyリー環が現われることを示す. https://www.math.kyoto-u.ac.jp/~fujino/hokoku.html https://www.math.kyoto-u.ac.jp/~fujino/non-vani-rims.pdf 消滅定理と非消滅定理 京都大学 藤野修 数理研講究録, 1745,(2011) このノートでは、対数的標準対に対する消滅定理と非消滅定理を解説する。我々の新しいアプローチは、対数的標準対に対する極小モデル理論の基本定理たちの証明を著しく簡略化する 目次 1消滅定理と非消滅定理ってなに? 2 2はじめに3 3おわび4 4特異点の定義5 5非消滅定理7 以下略 参考文献 [BCHM] C.Birkar, P.Cascini, C.Hacon, J.McKernan, Existence of minimalmodelsforvarietiesofloggeneraltype,preprint(2006). [藤1]藤野 修,極小モデル理論の新展開,雑誌「数学」61巻2号,162186(2009). 1消滅定理と非消滅定理ってなに? 今ここを読んでいる人は、せめてこの章だけは読んで欲しい。 この章は高次元代数多様体論普及のための解説である。非専門家向けに書いてある。 以下すべて複素数体上で考える。 Xを非特異射影代数多様体とし、DをX上のカルティエ因子とする。典型的な消滅定理は、 略 代数幾何学を学んだことのある人なら誰でも、リーマン面(もしくは代数曲線)上でリーマン–ロッホの公式をつかって線形系の性質を調べるという話を勉強したことがあると思う。 我々はその話の単純な高次元化を考えていると言っても良いかもしれない。 スタックもファンクターも導来圏もあまり目にしない古典的な分野である。 次の章からは通常の解説記事である。 つづく http://rio2016.5ch.net/test/read.cgi/math/1744899342/4
762: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/03(土) 19:48:55.84 ID:hWSy8C+R >>718 補足 >4)有理数Qによる全てのコーシー列で、同じ収束点に収束するコーシー列が複数存在する > そうすると 対応が 全射になる。これを全単射(1対1対応)にしたい > そこで、同じ収束点に収束するコーシー列をまとめて 同値類とする 有理数Qによるコーシー列だから、一つの同じ収束点に、複数のコーシー列が存在するのです しかし、>>625より >>554より (引用開始) https://en.wikipedia.org/wiki/Cauchy_sequence Cauchy sequence In real numbers For any real number r, the sequence of truncated decimal expansions of r forms a Cauchy sequence. For example, when r=π, this sequence is (3, 3.1, 3.14, 3.141, ...). The mth and nth terms differ by at most 10^(1−m) when m < n, and as m grows this becomes smaller than any fixed positive number ε. (引用終り) つまり、有理コーシー列ならば 表現の自由度が大きいから ”For any real number r, the sequence of truncated decimal expansions of r forms” を使おうってことだ かつ、 (3, 3.1, 3.14, 3.141, ...) のように 最小の一桁ずつ 桁数が伸びるようにする そうすれば、the sequence of truncated decimal expansionsで 1桁ずつの小数展開 では、表現は一通りだ (引用終り) このように、無限小数展開を使えば、ここから コーシー列は一意(但し 9999・・ の繰り上がりは別途処理要) つまり、コーシー列の工夫で コーシー列の ”同値類”概念は、外せる 即ち、”同値類”概念は 必須でなく、本質でもない!w ;p) http://rio2016.5ch.net/test/read.cgi/math/1744899342/762
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s