マセマはなぜ批判されるのか (227レス)
上
下
前
次
1-
新
77
(1)
: 04/16(水)22:14
ID:pohIwF7q(1/2)
AA×
>>44
外部リンク:terrytao.wordpress.com
[240|
320
|
480
|
600
|
100%
|
JPG
|
べ
|
レス栞
|
レス消
]
77: [] 2025/04/16(水) 22:14:19.57 ID:pohIwF7q >>44 >マセマぐらいのことしかやってないアメリカの学部卒に院であっというまに追い抜かされるのが日本の高等教育。 従来の日本の数学高等教育は、厳密病だった 米では、Terence Taoなどが 「3.The “post-rigorous” stage」を提唱している 「3.The “post-rigorous” stage」を意識して成長するか それとも レベル2の”厳密”(rigorous”)で成長が止まるか の違いでは? (参考) https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/comment-page-1/ By Terence Tao There’s more to mathematics than rigour and proofs July 2016 (1) One can roughly divide mathematical education into three stages: 1.The “pre-rigorous” stage, 略 2.The “rigorous” stage,略 3.The “post-rigorous” stage, in which one has grown comfortable with all the rigorous foundations of one’s chosen field, and is now ready to revisit and refine one’s pre-rigorous intuition on the subject, but this time with the intuition solidly buttressed by rigorous theory. (For instance, in this stage one would be able to quickly and accurately perform computations in vector calculus by using analogies with scalar calculus, or informal and semi-rigorous use of infinitesimals, big-O notation, and so forth, and be able to convert all such calculations into a rigorous argument whenever required.) The emphasis is now on applications, intuition, and the “big picture”. This stage usually occupies the late graduate years and beyond. The transition from the first stage to the second is well known to be rather traumatic, with the dreaded “proof-type questions” being the bane of many a maths undergraduate. (See also “There’s more to maths than grades and exams and methods“.) But the transition from the second to the third is equally important, and should not be forgotten. It is of course vitally important that you know how to think rigorously, as this gives you the discipline to avoid many common errors and purge many misconceptions. Unfortunately, this has the unintended consequence that “fuzzier” or “intuitive” thinking (such as heuristic reasoning, judicious extrapolation from examples, or analogies with other contexts such as physics) gets deprecated as “non-rigorous”. All too often, one ends up discarding one’s initial intuition and is only able to process mathematics at a formal level, thus getting stalled at the second stage of one’s mathematical education. (Among other things, this can impact one’s ability to read mathematical papers; an overly literal mindset can lead to “compilation errors” when one encounters even a single typo or ambiguity in such a paper.) つづく http://rio2016.5ch.net/test/read.cgi/math/1744330968/77
マセマぐらいのことしかやってないアメリカの学部卒に院であっというまに追い抜かされるのが日本の高等教育 従来の日本の数学高等教育は厳密病だった 米では などが を提唱している を意識して成長するか それとも レベルの厳密で成長が止まるか の違いでは? 参考 略 略 つづく
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 150 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
ぬこの手
ぬこTOP
0.051s