[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
419: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/09(日) 11:45:29.53 ID:lz6oAIdr つづき https://ja.wikipedia.org/wiki/%E5%BD%A2%E5%BC%8F%E7%9A%84%E5%86%AA%E7%B4%9A%E6%95%B0 形式的冪級数 A を可換とは限らない環とする。A に係数をもち X を変数(不定元)とする 形式的冪級数全体からなる集合 A[[X]] に和と積を定義して環の構造を与えることができ、これを形式的冪級数環という https://ja.wikipedia.org/wiki/%E5%A4%9A%E9%A0%85%E5%BC%8F%E7%92%B0 多項式環 体上の一変数多項式環 K[X] (rio2016.5ch.net/test/read.cgi/math/1736907570/16 より再録) www.math.sci.hiroshima-u.ac.jp/algebra/member/files/tsuzuki/04-21.pdf 代数学I 都築暢夫 広島大 F を体とする P3 例3.2.多項式環F[x]. F[x]nは1,x,··· ,xnを基底に持つn+1次元線形空間である F線形空間F[x]は任意の自然数より大きい次元の部分空間を持つから無限次元である 証明. 1,x,··· ,xnがF[x]nの基底になること: 1,x,··· ,xnがF[x]nを生成することは明らか a0,··· ,an∈Fに対してa0+a1x+···+anxn=0とするとき、a0=a1=···an=0となることをnに関する帰納法で証明する n=0のときは明らか。n−1まで成り立つとする。x=0とすると、a0=0である (a1+ a2x+···+anxn−1)x=0より、a1+a2x+···+anxn−1=0である 帰納法の仮定から、a1=···an=0となる。よって、1,x,··· ,xnは一次独立である したがって、1,x,··· ,xnはF[x]nの基底になる■ maspypy.com/%E5%A4%9A%E9%A0%85%E5%BC%8F%E3%83%BB%E5%BD%A2%E5%BC%8F%E7%9A%84%E3%81%B9%E3%81%8D%E7%B4%9A%E6%95%B0%E6%95%B0%E3%81%88%E4%B8%8A%E3%81%92%E3%81%A8%E3%81%AE%E5%AF%BE%E5%BF%9C%E4%BB%98%E3%81%91 maspyのHP 2023.09.25 [多項式・形式的べき級数] (1)数え上げとの対応付け (2)式変形による解法の導出 (3)線形漸化式と形式的べき級数 概要 ある種の数え上げの計算は、多項式・形式的べき級数に対する計算と結び付けることができます。数え上げの問題を、多項式・形式的べき級数に対する計算と読み替えて、代数的な式変形により答を得る手法が、競技プログラミングにおいても注目され始めているようです (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1738367013/419
734: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/11(火) 23:09:47.96 ID:zr+dFWV7 >>699 >箱入り無数目のロジックに穴がないことも >納得した。 おお恐れながら 箱入り無数目のロジックに穴がないとしても rio2016.5ch.net/test/read.cgi/math/1736907570/ 1列の場合に矛盾ありです つまり 1列の出題 s = (s1,s2,s3 ,・・,sn-1,sn,sn+1,・・) ∈R^N を考える いま しっぽ同値類の代表 s' = (s'1,s'2,s'3 ,・・,s'n-1,sn,sn+1,・・) ∈R^N であったとして この場合、sn-1≠s'n-1 として、n以降は一致していて 決定番号d=n です いま、回答者のAさんが、ある大きな有限の数 D をとって d < D と出来れば , D 以降の箱 sD,sD+1,sD+2,・・の箱を開けて 出題のしっぽから 同値類を特定して、その代表列 s' = (s'1,s'2,s'3 ,・・,s'n-1,sn,sn+1,・・) があって sD-1の未開の箱の数は、定義より d ≦ D-1 が成り立っているので 代表のD-1の数が、未開の箱の数 sD-1 と一定している と宣言すれば、Aさんは勝てる そして、もし 常に ある大きな数 D をとって d < D と出来るならば、回答者のAさんは、100%必勝です だが、これは変です その解明として、数列を形式的冪級数τ(X)と考えるて τ(x) = s1+s2x+s3x^2・・+sn-1x^n-2+snx^n-1+sn+1x^n+・・ として 上記同様に考えると、代表 τ'(x) = s'1+s'2x+s'3x^2・・+s'n-1x^n-2+snx^n-1+sn+1x^n+・・ として 差を取ると 決定番号d=n より上の係数は消えて τ(x) -τ'(x) =s1-s'1+(s2-s'2)x+(s3-s'3)x^2・・+(sn-1-s'n-1)x^n-2 :=f(x) (多項式) と 係数 (sn-1-s'n-1) より小さい部分が残り n-2次多項式に なる しっぽ同値類とは、形式的冪級数環R[[x]]/R[x] (R[x]は多項式環) という商集合で しっぽ同値類の代表とは、f(x)∈R[x]、τ(x) =τ'(x)+f(x) ∈R[[x]] です 多項式環R[x]は、任意の自然数より大きい次元の部分空間を持つ無限次元線形空間 (>>419 都築より) ですから、いま あえて未定義の ランダム*)という言葉を使うと ランダムに選ぶ R[x]の元は(前記の意味で)無限次ですので ”回答者のAさんが、ある大きな有限の数 D をとって d < D と出来る”が不成立です(τ(x) が わかって意図すれば可能です) ( *)”ランダム”を、選択公理に お任せ と考えても良いでしょう) 追伸 いま 100列で考えて、99列から ある大きな有限の数 D を決める 1列が未開で残る。そうすると、上記と同じ状態になります 箱入り無数目は、未開の1列と 開けてしまった99列が平等だと仮定している そう仮定すれば、ロジックに穴がないかも知れないが 未開の1列と 開けてしまった99列とが 平等に扱えないならば、上記の通りです http://rio2016.5ch.net/test/read.cgi/math/1738367013/734
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.127s