[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
360: 132人目の素数さん [] 2025/02/08(土) 10:59:04.67 ID:On5L4hhG >>346 >なぜか分かる? おサルさん 分からなかったようだね。超サービス問題だけどおサルさんには難しかったかい? >順序数全体の集まりは集合でない。 順序数全体のクラスOを集合と仮定する。 このときOも順序数だからO∈O。正則性公理に反するから仮定は偽、すなわちOは集合でない。 >n重括弧{{・・・{{}}・・・}}全体の集まりは集合である。 {1,2,・・・}:=N、n重括弧全体のクラスをXとする。 写像f:N→X を f(n)=n重括弧 で定義したとき ∀x∈X⇒∃n∈N.f(n)=x だから f(N)=X。 置換公理より f(N)=X は集合である。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/360
367: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/08(土) 11:19:17.08 ID:23ITt7NX >>360 >>順序数全体の集まりは集合でない。 >順序数全体のクラスOを集合と仮定する。 >このときOも順序数だからO∈O。正則性公理に反するから仮定は偽、すなわちOは集合でない。 アホなおサルと>>7-10、 10分議論をする暇があったら 下記のen.wikipedia Ordinal number を、3分黙読する方が、よほど有益だわw ;p) (日wikipediaには、順序数のクラスの記述はないけどね (^^) (参考) https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数(じゅんじょすう、英: ordinal number)とは、整列集合同士の“長さ”を比較するために、自然数[1]を拡張させた概念である。 https://en.wikipedia.org/wiki/Ordinal_number Ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, nth, etc.) aimed to extend enumeration to infinite sets.[1] Definitions Well-ordered sets Essentially, an ordinal is intended to be defined as an isomorphism class of well-ordered sets: that is, as an equivalence class for the equivalence relation of "being order-isomorphic". There is a technical difficulty involved, however, in the fact that the equivalence class is too large to be a set in the usual Zermelo–Fraenkel (ZF) formalization of set theory. But this is not a serious difficulty. The ordinal can be said to be the order type of any set in the class. Definition of an ordinal as an equivalence class The original definition of ordinal numbers, found for example in the Principia Mathematica, defines the order type of a well-ordering as the set of all well-orderings similar (order-isomorphic) to that well-ordering: in other words, an ordinal number is genuinely an equivalence class of well-ordered sets. This definition must be abandoned in ZF and related systems of axiomatic set theory because these equivalence classes are too large to form a set. However, this definition still can be used in type theory and in Quine's axiomatic set theory New Foundations and related systems (where it affords a rather surprising alternative solution to the Burali-Forti paradox of the largest ordinal). Von Neumann definition of ordinals See also: Set-theoretic definition of natural numbers and Zermelo ordinals Rather than defining an ordinal as an equivalence class of well-ordered sets, it will be defined as a particular well-ordered set that (canonically) represents the class. Thus, an ordinal number will be a well-ordered set; and every well-ordered set will be order-isomorphic to exactly one ordinal number. http://rio2016.5ch.net/test/read.cgi/math/1738367013/367
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s