[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
182: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 07:51:08.42 ID:Md2R2j9H >>180 >>任意のベクトルを無限個のベクトルの線形結合で表すことである.ヒルベルト空間では,これを実現する正規直交基底を取ることがいつでもでき,有限次元空間とよく似た話が無限次元でも展開できる.フーリエ級数はその具体例として大変重要なものである. >これ、選択公理を使うだろうと思って調べていた >下記 山上滋先生 名大 関数解析入門 『命題4.5.ヒルベルト空間の正規直交基底は必ず存在する。(全然一意的ではないが。) >Proof.基本的なアイデアはの直交化であるが、正式にはのZorn補題を使う。各自、確かめよ』 >ですね (^^ <補足> 1)Zorn補題は、選択公理と同値 2)Zorn補題(選択公理)で、通常のベクトル空間(基底の有限和)から 基底の無限個のベクトルの線形結合を使う ヒルベルト空間まで その空間の基底の存在と、次元(ベクトル空間の場合 基底の集合の濃度を意味する。可算にする場合が多いらしい)が決められる 3)『全然一意的ではないが』 by 山上滋先生 名大 存在のみのZorn補題(選択公理)で、言える 4)その存在定理の典型的な、使い方が>>110だね 同様に、例えば、ヒルベルト空間で ある特別な基底候補を使いたいとき まず、上記 命題4.5 に照らしてみれば良い そうすれば、その基底候補が、実際に基底として使えることが分る フーリエ級数が、典型例>>160 "Zorn補題(選択公理)は、存在しか言えないから 具体的なこと言えない"と思った あなた それ勘違いですよ 存在の公理(定理)だから、適用範囲が広い そして、ある空間の 基底の存在定理、次元定理から 具体的な 基底候補が、実際の基底として採用できることが分る http://rio2016.5ch.net/test/read.cgi/math/1738367013/182
183: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 07:52:48.99 ID:Md2R2j9H >>182 タイポ訂正 その空間の基底の存在と、次元(ベクトル空間の場合 基底の集合の濃度を意味する。可算にする場合が多いらしい)が決められる ↓ その空間の基底の存在と、次元(ヒルベルト空間の場合 基底の集合の濃度を意味する。可算にする場合が多いらしい)が決められる http://rio2016.5ch.net/test/read.cgi/math/1738367013/183
184: 132人目の素数さん [] 2025/02/05(水) 08:18:00.45 ID:5j19JkQh >>182 > Zorn補題(選択公理)で、 > 線形空間の基底の存在と、 > 次元(基底の集合の濃度を意味する)が決められる > 基底の存在定理の典型的な、使い方が>>110だね >>111な 三ケタの数字を覚えられんのか? この昭和耄碌爺 で、>>112は解けたのか? 線形空間が有限次元なら、選択公理なんか使わんでも、 次元定理なんか直接証明できるぞ●● 大学1年の線型代数で習わんかったか? ああ、論理がわからんので全く理解できんかったか? 計算方法覚えることしかできん●●公の工学部卒社奴 http://rio2016.5ch.net/test/read.cgi/math/1738367013/184
185: 132人目の素数さん [] 2025/02/05(水) 08:21:10.28 ID:5j19JkQh >>182 > ある空間の 基底の存在定理、次元定理から > 具体的な 基底候補が、実際の基底として採用できることが分る じゃ、RをQ上の線形空間としてみたときの基底を、具体的に構成してみてくれる? できるものならな http://rio2016.5ch.net/test/read.cgi/math/1738367013/185
191: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 10:50:53.01 ID:hl9U/ln8 >>182 補足 ・Hilbert spaceの Hilbert dimension は、下記 "As a consequence of Zorn's lemma, every Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same cardinality, called the Hilbert dimension of the space.[94]" (which may be a finite integer, or a countable or uncountable cardinal number). ・”The Hilbert dimension is not greater than the Hamel dimension (the usual dimension of a vector space).” ”As a consequence of Parseval's identity,[95] 略 ” ・なお、>>146-147 "Proof that every vector space has a basis"では、有限和は 陽には使われていない なので ”The set X is nonempty since the empty set is an independent subset of V, and it is partially ordered by inclusion, which is denoted, as usual, by ⊆. Let Y be a subset of X that is totally ordered by ⊆, and let LY be the union of all the elements of Y (which are themselves certain subsets of V). Since (Y, ⊆) is totally ordered, every finite subset of LY is a subset of an element of Y, which is a linearly independent subset of V, and hence LY is linearly independent. Thus LY is an element of X. Therefore, LY is an upper bound for Y in (X, ⊆): it is an element of X, that contains every element of Y. As X is nonempty, and every totally ordered subset of (X, ⊆) has an upper bound in X, Zorn's lemma asserts that X has a maximal element. In other words, there exists some element Lmax of X satisfying the condition that whenever Lmax ⊆ L for some element L of X, then L = Lmax.” とやっているので、⊆ による順序は Hilbert space でも そのまま使える あとは、直交基底と 位相的な収束の話を 色付けすれば、よさそうだ (参考) https://en.wikipedia.org/wiki/Hilbert_space Hilbert space Hilbert dimension As a consequence of Zorn's lemma, every Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same cardinality, called the Hilbert dimension of the space.[94] For instance, since l^2(B) has an orthonormal basis indexed by B, its Hilbert dimension is the cardinality of B (which may be a finite integer, or a countable or uncountable cardinal number). The Hilbert dimension is not greater than the Hamel dimension (the usual dimension of a vector space). As a consequence of Parseval's identity,[95] if {ek}k ∈ B is an orthonormal basis of H, then the map Φ : H → l^2(B) defined by Φ(x) = ⟨x, ek⟩k∈B is an isometric isomorphism of Hilbert spaces: it is a bijective linear mapping such that ⟨Φ(x),Φ(y)⟩l^2(B)=⟨x,y⟩H for all x, y ∈ H. The cardinal number of B is the Hilbert dimension of H. Thus every Hilbert space is isometrically isomorphic to a sequence space l^2(B) for some set B. http://rio2016.5ch.net/test/read.cgi/math/1738367013/191
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.028s