[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
146: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 16:33:49.38 ID:+HgMDnV2 >>131 (引用開始) >>129の「」には反例がある つまり、線形空間の次元が無限濃度の場合 単に同じ濃度の線形独立なベクトルが張る空間が 元の空間より真に小さい場合があり得る だから次元定理はもっと精密な言い方をしてるが ◆yH25M02vWFhPは勝手に粗視化してる 有限次元でOKだから無限次元でもそうなる、 と考えるのはあさはか (引用終り) なるほど >>111 の ja.wikipedia 基底 (線型代数学) で en.wikipedia で 該当の Basis (linear algebra) では ”This article deals mainly with finite-dimensional vector spaces. ”の一言があるね (ja.wikipediaの記述が滑っているか) ;p) ついでに、”Proof that every vector space has a basis”貼るよ ”This proof relies on Zorn's lemma, which is equivalent to the axiom of choice. Conversely, it has been proved that if every vector space has a basis, then the axiom of choice is true.[9]” (参考) https://en.wikipedia.org/wiki/Basis_(linear_algebra) Basis (linear algebra) This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Basis vectors find applications in the study of crystal structures and frames of reference. つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/146
191: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 10:50:53.01 ID:hl9U/ln8 >>182 補足 ・Hilbert spaceの Hilbert dimension は、下記 "As a consequence of Zorn's lemma, every Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same cardinality, called the Hilbert dimension of the space.[94]" (which may be a finite integer, or a countable or uncountable cardinal number). ・”The Hilbert dimension is not greater than the Hamel dimension (the usual dimension of a vector space).” ”As a consequence of Parseval's identity,[95] 略 ” ・なお、>>146-147 "Proof that every vector space has a basis"では、有限和は 陽には使われていない なので ”The set X is nonempty since the empty set is an independent subset of V, and it is partially ordered by inclusion, which is denoted, as usual, by ⊆. Let Y be a subset of X that is totally ordered by ⊆, and let LY be the union of all the elements of Y (which are themselves certain subsets of V). Since (Y, ⊆) is totally ordered, every finite subset of LY is a subset of an element of Y, which is a linearly independent subset of V, and hence LY is linearly independent. Thus LY is an element of X. Therefore, LY is an upper bound for Y in (X, ⊆): it is an element of X, that contains every element of Y. As X is nonempty, and every totally ordered subset of (X, ⊆) has an upper bound in X, Zorn's lemma asserts that X has a maximal element. In other words, there exists some element Lmax of X satisfying the condition that whenever Lmax ⊆ L for some element L of X, then L = Lmax.” とやっているので、⊆ による順序は Hilbert space でも そのまま使える あとは、直交基底と 位相的な収束の話を 色付けすれば、よさそうだ (参考) https://en.wikipedia.org/wiki/Hilbert_space Hilbert space Hilbert dimension As a consequence of Zorn's lemma, every Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same cardinality, called the Hilbert dimension of the space.[94] For instance, since l^2(B) has an orthonormal basis indexed by B, its Hilbert dimension is the cardinality of B (which may be a finite integer, or a countable or uncountable cardinal number). The Hilbert dimension is not greater than the Hamel dimension (the usual dimension of a vector space). As a consequence of Parseval's identity,[95] if {ek}k ∈ B is an orthonormal basis of H, then the map Φ : H → l^2(B) defined by Φ(x) = ⟨x, ek⟩k∈B is an isometric isomorphism of Hilbert spaces: it is a bijective linear mapping such that ⟨Φ(x),Φ(y)⟩l^2(B)=⟨x,y⟩H for all x, y ∈ H. The cardinal number of B is the Hilbert dimension of H. Thus every Hilbert space is isometrically isomorphic to a sequence space l^2(B) for some set B. http://rio2016.5ch.net/test/read.cgi/math/1738367013/191
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
2.018s*