[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
14: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/02/01(土) 17:57:40.68 ID:lDxwqd7y 前スレ 再録 rio2016.5ch.net/test/read.cgi/math/1735693028/907 いつもお世話になっている alg-d 壱大整域氏 選択公理→ (整列可能定理) これ分かり易いかも ”写像 g:λ→X∪{∞} を g(α ) := f( X\{g(β)|β<α} )”で 順序数 → X∪{∞} (実質 Xのこと) なる g を 導入しているんだ で、写像 g の全単射を 言う なるほどね そうすると、置換公理を使う証明は、無理筋かも 循環論法になる恐れがある、多分 (不可能の証明は 難しいので いまは深入りしないことに) (参考)(蛇足だが P(X)は、Xの冪集合。なお。原サイトの方が見やすいよ) alg-d.com/math/ac/wo_z.html alg-d 壱大整域 トップ > 数学 > 選択公理 > 整列可能定理とZornの補題 2011年11月13日更新 整列可能定理とZornの補題 定理次の命題は(ZF上)同値. 1.選択公理 2.任意の集合Xは整列順序付け可能 (整列可能定理) 3.順序集合Xが「任意の部分全順序集合は上界を持つ」を満たすならば,Xの極大元が存在する.(Zornの補題) 証明 (1 ⇒ 2) Xを集合とする.Xが整列可能である事を示す. 順序数λで,¬|λ|≦|X| となるものを取る. 選択公理を A := P(X)\{ ∅ } に適用して,選択関数 f: A→X を得る. Xに含まれない元 ∞ ∉ X を用意して,f( ∅ ) := ∞ と定義することで f を f: P(X)→X∪{∞} に拡張しておく. 写像 g:λ→X∪{∞} を g(α ) := f( X\{g(β)|β<α} ) で定義する. α, β<λに対して,g(α)=g(β)≠∞ならば,α=βである. ∵β<αであるとする.g(α)≠∞だから,選択関数 f の性質より g(α) = f(X\{g(β)|β<α}) ∈ X\{g(β)|β<α} となる.即ち g(α) ∉ { g(β) | β<α } だから g(α)≠g(β) である. よって,もし g(α) = ∞ となるα<λが存在しなければ,g:λ→X は単射となる. これは ¬|λ|≦|X| に矛盾する.故に g(α) = ∞ となる α<λ は存在する. そこで γ := min{ α<λ | g(α)=∞ }と置く.このときg|γ: γ→X は全単射である. ∵∞ = g(γ) = f( X\{g(β)|β<γ} )だから,X\{g(β)|β<γ} = ∅,つまりg|γは全射でなければならない.単射性は先に示したことから明らか. よってこれによりXを整列する事ができる. (2 ⇒ 3)略す (3 ⇒ 1)略す おまけ (2⇒1)略す http://rio2016.5ch.net/test/read.cgi/math/1738367013/14
15: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/02/01(土) 18:17:16.93 ID:lDxwqd7y 前スレより 再録 rio2016.5ch.net/test/read.cgi/math/1735693028/913 alg-d 壱大整域氏 >>907の 証明 (1 ⇒ 2) の本質は Xの冪集合 P(X)\{ ∅ } に 選択公理の選択関数 を適用すると それが 如何なる 選択関数を採用したとしても ”写像 g:λ→X∪{∞} を g(α ) := f( X\{g(β)|β<α} )” なる g を 導入して 順序数 → X∪{∞} (実質 Xのこと) の 全単射 写像 g が構成できる 順序数と Xとの 全単射 が構成できるということは、 即ち Xに整列順序が導入できたということ (引用終り) 簡単に補足する いま、ミニモデルで 集合X={a,b,c,d}を考える 冪集合を作る P(X)={ {a,b,c,d}, {a,b,c},{a,b,d},{a,c,d},{b,c,d} {a,b},{a,c},{b,c}, {a,b},{a,d},{b,d}, {a,c},{a,d},{c,d}, {b,c},{b,d},{c,d}, {a},{b},{c,},{d}, ∅ } となる 説明すると、最初にX 自身 4元の集合があり 次に、X から元が一つ減った 3元の集合があり 次に、X から元が二つ減った 2元の集合があり 次に、X から元が三つ減った 1元の集合があり 最後に 元が無くなった 空集合がある で、Xから任意の元を取った 集合、 必ず 3元の集合が存在し その ある3元の集合から 任意の元を取った 集合、 必ず 2元の集合が存在し その ある2元の集合から 任意の元を取った 集合、 必ず 1元の集合が存在し という構造を、べき集合が有している そのべき集合の構造を うまく使ったのが >>14の alg-d 壱大整域氏の証明だと いうことです 繰り返すが、上記有限の集合で例示したのと同じことを 順序数をうまく使うことで、無限集合に拡張し 適用したってことでね http://rio2016.5ch.net/test/read.cgi/math/1738367013/15
16: 132人目の素数さん [] 2025/02/01(土) 18:28:06.07 ID:YIkJbYsl >>14 >なる g を 導入しているんだ >で、写像 g の全単射を 言う >なるほどね いやそれ、Jechの証明のaα、つまりAの元への順序数による附番と同じことを違う言い方で言ってるだけだから 君Jechの証明を全然分かってなかったんだね http://rio2016.5ch.net/test/read.cgi/math/1738367013/16
17: 132人目の素数さん [] 2025/02/01(土) 18:30:23.45 ID:YIkJbYsl >>14 で、以下はいつ答えるの? まさか分かってないのに分かってるふりしてたの? (引用開始) >順序数は、整列順序であるから >Aに整列順序が導入できた 順序数の通常の大小関係が整列順序だとなぜAに整列順序が導入できたことになるか分かる? (引用終了) http://rio2016.5ch.net/test/read.cgi/math/1738367013/17
26: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/02/01(土) 20:06:10.67 ID:lDxwqd7y ”<公開処刑 続く> (『 ZF上で実数は どこまで定義可能なのか?』に向けて と (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”] 『 ZF上で実数は どこまで定義可能なのか?』の前に Zornの補題 をやります ;p) まず、ここから (参考)>>14より 再録 alg-d.com/math/ac/wo_z.html alg-d 壱大整域 トップ > 数学 > 選択公理 > 整列可能定理とZornの補題 2011年11月13日更新 整列可能定理とZornの補題 定理次の命題は(ZF上)同値. 1.選択公理 2.任意の集合Xは整列順序付け可能 (整列可能定理) 3.順序集合Xが「任意の部分全順序集合は上界を持つ」を満たすならば,Xの極大元が存在する.(Zornの補題) 証明 (3(Zornの補題) ⇒ 1(選択公理)) {X_λ}_{λ∈Λ}を非空集合の族とする. A := { g:Σ→∪_{λ∈Λ} X_λ | Σ⊂Λ, 任意のλ∈Σに対してg(λ)∈Xλ } としてAに ⊂ で順序を入れる.B⊂Aを部分全順序集合とするとき ∪g∈B g ∈ A は B の上界である. 即ち A はZornの補題の仮定を満たす.故に極大元 f∈A を持つ. もし dom(f)≠Λ であれば f が極大であることに反するので dom(f)=Λ となる.故に f は選択関数である. http://rio2016.5ch.net/test/read.cgi/math/1738367013/26
28: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 11:23:54.05 ID:5scbwZz/ >>22 (引用開始) >Xの元を すきな順番に整列できる 大間違い。 順番は選択関数で一意に定まる。 (引用終り) <反証> 1)選択公理(選択関数)と整列可能定理が 同値であることを認めるとする 2)集合Xについて、整列可能定理を適用する Xから好きな元x1∈Xを取り出す。残り X':=X\ {x1} X'から好きな元x2∈X'を取り出す。残り X'':=X'\ {x2} すきなだけ繰り返す。その後に残ったものに 整列可能定理を適用する 3)さて、上記2)で そもそも 整列可能定理とは 最後が空集合になるまで繰り返して良いとするものだった なので、整列可能定理における ”お好きなように”は、選択公理(選択関数)でも同じ 4)実際、下記 alg-d 壱大整域 整列可能定理 ⇒ 選択公理(選択関数)の証明で ”整列可能定理により∪_{λ∈Λ}X_λを整列し f(λ) := (X_λの最小元) とすれば f が選択関数である” とあるが、和集合 ∪_{λ∈Λ}X_λ の整列を 好きにして良いならば、 f(λ) := (X_λの最小元) も好きにできる。つまり、f 選択関数 も好きにできる■ 余談だが、”Take your choice”(好きなものを取りなさい)goo辞書 dictionary.goo.ne.jp/word/en/Take+your+choice./ choice には、お好きなように という意味がある なお、存在のみで 具体的でない場合も可 例えば、実数Rの整列では、分るところのみを お好みにして、残りの 不明部分は 存在のみの公理任せも可!w ;p) 公理なんだものww (参考)(原サイトの方が見やすいよ)>>14より alg-d.com/math/ac/wo_z.html alg-d 壱大整域 トップ > 数学 > 選択公理 > 整列可能定理とZornの補題 2011年11月13日更新 整列可能定理とZornの補題 定理次の命題は(ZF上)同値. 1.選択公理 2.任意の集合Xは整列順序付け可能 (整列可能定理) 3.順序集合Xが「任意の部分全順序集合は上界を持つ」を満たすならば,Xの極大元が存在する.(Zornの補題) 証明 (2⇒1) {X_λ}_{λ∈Λ}を非空集合の族とする.整列可能定理により∪_{λ∈Λ}X_λを整列し f(λ) := (X_λの最小元) とすれば f が選択関数である. http://rio2016.5ch.net/test/read.cgi/math/1738367013/28
47: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 19:45:40.82 ID:5scbwZz/ >>41 (引用開始) >突っかかるやつへの対抗ですよw ;p) 君自身がコピペした内容理解してないから無意味 君、Jechの証明理解してないじゃん (引用終り) ふっふ、ほっほ 1)もし 引用部分が正しいとするね そうすると、私の書いていることは 基本は 引用部分のURLからの再引用(2度目の引用)であります ;p) あるいは、引用部分のURLからの必然の事項となっています 2)従って、理解している いない には 関係なく ツッコミどころは、ない!w (そこを たまに誤解して、”再引用(2度目の引用)”を 私個人の意見と誤解して ツッコミ入れる人居ますw。それ あなたですw) 3)Jechの証明、前スレより下記だね en.wikipedia の ”sup{α∣aα is defined}”が分らんと言っていた人 あなたでしょ?w 私も 誤解がありましたが、>>14の alg-d 壱大整域氏 の証明で、ようやく理解できました ご苦労さまですw ;p) 前スレ 808より (参考)(再掲) 631より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7. (引用終り) Thomas Jechの 証明 再録(前スレ 848より) P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■ (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1738367013/47
49: 132人目の素数さん [] 2025/02/02(日) 19:51:42.57 ID:7z4Dw9JT >>47 >私も 誤解がありましたが、>>14の alg-d 壱大整域氏 の証明で、ようやく理解できました いいえ、あなたは理解できてません。理解できてる人が >すきな順番に整列できる などという嘘デタラメ言いません。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/49
50: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 19:58:40.30 ID:5scbwZz/ >>44 (引用開始) >3)つまり、あなたの選択関数と、私が(思う)選択する選択関数w > は、異なって良いのです!!ww ;p) だからと言って勝手な選択関数は作れない。 もし作れるならそもそも選択公理は不要。 だから >すきな順番に整列できる は嘘デタラメ。 (引用終り) ふっふ、ほっほ ・それ、自爆発言ですね ・自ら、>>47のJechの証明 あるいは >>14の alg-d 壱大整域氏 の証明が ちゃんと 理解出来ていないと 自白しているに 等しい!w ・もし ちゃんと 理解出来ているならば 選択公理(選択関数)には 大きな自由度(任意度)があるのが分るはずです おサルさん>>7-10、 証明を読むときに 私が 心がけているのが 数学の証明は、その背後の数学的構造を反映する鏡であり 数学の証明を理解することは、背後の数学的構造を理解することだと そう思って証明を見ています あなたは、真に Jechの証明 あるいは >>14の alg-d 壱大整域氏 の証明が ちゃんと 理解出来ては いない!!www ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/50
51: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 20:01:01.53 ID:5scbwZz/ >>50 補足 >・もし ちゃんと 理解出来ているならば > 選択公理(選択関数)には 大きな自由度(任意度)があるのが分るはずです >あなたは、真に Jechの証明 あるいは >>14の alg-d 壱大整域氏 の証明が >ちゃんと 理解出来ては いない!!www ;p) その 選択公理(選択関数)の誤解・誤読が 箱入り無数目の あなたの議論の迷走の 根源です!w ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/51
57: 132人目の素数さん [] 2025/02/02(日) 22:29:41.72 ID:7z4Dw9JT >>50 >・それ、自爆発言ですね それが君 >・自ら、>>47のJechの証明 あるいは >>14の alg-d 壱大整域氏 の証明が > ちゃんと 理解出来ていないと 自白しているに 等しい!w それが君 >・もし ちゃんと 理解出来ているならば > 選択公理(選択関数)には 大きな自由度(任意度)があるのが分るはずです 選択公理とは「空でない集合の空でない族の直積は空でない」である。 つまり、直積の何らかの元が存在すると主張している。これは論理記号で書けば∃fであって∀fではない。 大きな任意度があーと言ってる君は∃と∀の区別が分かってないだけ。 そこが分からないから大学一年4月に落ちこぼれたんだよ。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/57
58: 132人目の素数さん [] 2025/02/02(日) 22:29:53.96 ID:7z4Dw9JT >おサルさん>>7-10、 おサルさんは君 >証明を読むときに 私が 心がけているのが 君には証明なんて読めないよ。 ∃と∀の区別が分からない人がなんで証明読めるの? >数学の証明は、その背後の数学的構造を反映する鏡であり >数学の証明を理解することは、背後の数学的構造を理解することだと >そう思って証明を見ています いや、∃と∀の区別が分からない人の講釈は無用。 >あなたは、真に Jechの証明 あるいは >>14の alg-d 壱大整域氏 の証明が >ちゃんと 理解出来ては いない!!www ;p) それが君。 なぜなら、ちゃんと理解出来てる人は >すきな順番に整列できる などという嘘デタラメ言わないので。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/58
79: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/03(月) 11:25:44.20 ID:Kqr4zqHs >>64-65 ID:bvvTKD+8 は、御大か 巡回ご苦労様です なるほど ご指摘の思い当たる点を 自分で赤ペンすると (引用開始) >>15で示した 例示 ミニモデルで 集合X={a,b,c,d} で 冪集合 P(X)={ {a,b,c,d}, {a,b,c},{a,b,d},{a,c,d},{b,c,d} {a,b},{a,c},{b,c}, {a,b},{a,d},{b,d}, {a,c},{a,d},{c,d}, {b,c},{b,d},{c,d}, {a},{b},{c,},{d}, ∅ } これで 包含関係 で 順序が入る {a,b,c,d}⊃{a,b,d}⊃{a,b}⊃{a}⊃∅ で、整列順序の極大元になる この前後の差分 c>d>b>a Xので整列になる この極大は、幾通りもある(どれを選ぶも任意!!です) (引用終り) 1)ここの素朴(ナイーヴ)な議論が、まずいってことですね 2)つまり、無限集合では ヒルベルトホテルのパラドックスが起きる ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%81%AE%E7%84%A1%E9%99%90%E3%83%9B%E3%83%86%E3%83%AB%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9 例えば、順序数ω から 一つ減らしても ωのままです (順序数の演算ご参照 ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 ) 3)この素朴な議論を、ZFC内で 正当化したのが >>14の alg-d 壱大整域氏 の証明で そこで 必要なのが 1)選択公理(及びそれと同値のZorn補題) 2)順序数 との対応付け ということですね これによって 当初の素朴(ナイーヴ)な議論のスジが、ほぼZFC内の議論に変換できている 4)ここで、注目すべきは 冪集合 P(X)には、⊃ による 順序構造とか X={a,b,c,d}を頂点にして 最底辺が 空集合∅ という 階層構造とかがある (一方 X自身には そういう構造の仮定はない) ここらを潜在的な構造として うまく ZFC内で 正当化しているのが、 >>14の alg-d 壱大整域氏 の証明です なお >>37の ツォルン(Zorn)の補題 → ツェルメロ(Zermelo)の整列定理の証明 も 同様です http://rio2016.5ch.net/test/read.cgi/math/1738367013/79
87: 132人目の素数さん [] 2025/02/03(月) 14:48:21.68 ID:Kqr4zqHs >>80 原理はその通り >>14の alg-d 壱大整域氏 の証明は それを ZFCのルール中で 構成している http://rio2016.5ch.net/test/read.cgi/math/1738367013/87
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
3.404s*