[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
1: 132人目の素数さん [] 2025/02/01(土) 08:43:33.16 ID:lDxwqd7y 前スレが1000近く又は1000超えになったので、新スレを立てる https://rio2016.5ch.net/test/read.cgi/math/1735693028/ 前スレ ガロア第一論文と乗数イデアル他関連資料スレ12 このスレは、ガロア第一論文と乗数イデアル他関連資料スレです 関連は、だいたい何でもありです(現代ガロア理論&乗数イデアル関連他文学論・囲碁将棋まであります) 資料としては、まずはこれ https://sites.google.com/site/galois1811to1832/ ガロアの第一論文を読む 渡部 一己 著 (2018.1.28) PDF https://sites.google.com/site/galois1811to1832/galois-1.pdf?attredirects=0 <乗数イデアル関連> ガロア第一論文及びその関連の資料スレ https://rio2016.5ch.net/test/read.cgi/math/1615510393/785 以降ご参照 https://en.wikipedia.org/wiki/Multiplier_ideal Multiplier ideal https://mathoverflow.net/questions/142937/motivation-for-multiplier-ideal-sheaves motivation for multiplier ideal sheaves asked Sep 23, 2013 Koushik <層について> https://ja.wikipedia.org/wiki/%E5%B1%A4_(%E6%95%B0%E5%AD%A6) 層 (数学) https://en.wikipedia.org/wiki/Sheaf_(mathematics) Sheaf (mathematics) https://fr.wikipedia.org/wiki/Faisceau_(math%C3%A9matiques) Faisceau (mathématiques) あと、テンプレ順次 つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/1
2: 132人目の素数さん [] 2025/02/01(土) 08:44:06.57 ID:lDxwqd7y つづき メモ https://www.iwanami.co.jp/book/b374907.html 岩波科学ライブラリー ガロアの論文を読んでみた 時代を超越していたガロアの第1論文.その行間を補いつつ,高校数学をベースにじっくりと読み解く. https://www.iwanami.co.jp//images/book/374907.jpg 著者 金 重明 著 刊行日 2018/09/21 試し読み https://www.iwanami.co.jp/moreinfo/tachiyomi/0296770.pdf この本の内容 決闘の前夜,ガロアが手にしていた第1論文.方程式の背後に群の構造を見出したこの論文は,まさに時代を超越するものだった.置換の定式化にはじまり,ガロア群,正規部分群の発見をへて,方程式が代数的に解ける条件の証明へ.簡潔で省略の多いガロアの記述の行間を補いつつ,高校数学をベースにじっくりと読み解く. http://arigirisu2011.さくら.ne.jp/public_html/Galois01.html ガロア理論 Galois theory 第一論文 ガロアの第一論文は、「方程式が代数的に解けるための必要十分条件」を【原理】と【応用】で論じている。 ここでは【原理】の部分を確認する。1831年当時「群」・「体」の用語がなく、ガロアは「群」・「体」という言葉は使わなかったが、ここでは「群」・「体」という用語を使って説明する。 概要 第一論文は、 ・定義(可約と既約) ・定義(置換群) ・補題1(既約多項式の性質)→補題2(根でつくるV)→補題3(Vで根を表す)→補題4(Vの共役) ・定理1(「方程式のガロア群」の定義) ・定理2(「方程式のガロア群」の縮小) ・定理3(補助方程式のすべての根を添加) ・定理4(縮小したガロア群の性質) ・定理5(方程式が代数的に解ける必要十分条件) というストーリーで進みます。 http://arigirisu2011.さくら.ne.jp/public_html/Galois02.html ガロア理論 Galois theory つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/2
3: 132人目の素数さん [] 2025/02/01(土) 08:44:24.22 ID:lDxwqd7y つづき メモ (デデキントのガロア理論講義の話が興味深い) https://www.jstage.jst.go.jp/article/kisoron1954/15/4/15_4_159/_pdf ガロア理論の推移史について 中村幸四郎* 科学基礎論研究1982 この論文は多くの後継者を経て,後に「ガロア理論」 といわれ,数学理論のうちの理論ともいわれるものとな り,現代に及んでいることは周知のとおりであるが,私 はこの小文において,これがフランス数学からドイツ数 学へ移行する問題を,数学史の1つの問題として考察し ょうと思う。 2.現在行われている「ガロア理論」は約150年の歳月 を経て,ガロアの原著とは著しく変ったものとなってい る.その最も著しい点はガロアの原著が群(とくに有限 群)を基調とするものであるのに対比して,現代の理論 は体(Korper)の理論,特に体の「拡大」(Erweiterung) を基礎に置くものとなっている。 https://ja.wikipedia.org/wiki/%E4%B8%AD%E6%9D%91%E5%B9%B8%E5%9B%9B%E9%83%8E 中村 幸四郎(1901年6月6日 - 1986年9月28日)は、日本の数学者(数学基礎論・数学史)。大阪大学名誉教授、関西学院大学名誉教授、兵庫医科大学名誉教授、文学博士。従四位勲三等旭日中綬章 https://www.kurims.kyoto-u.ac.jp/~kenkyubu/kokai-koza/H18-tamagawa.pdf 数学入門公開講座テキスト(京都大学数理解析研究所,平成18年) ガロア理論とその発展 玉川安騎男 環の典型的な現れ方として、与えられた空間Xの上の(適当な条件を満たす)関数全体のなす環があります。この場合、関数の値の和、差、積を考えることにより、関数の和、差、積を定義します。(1,0は、それぞれ恒等的に値1,0を取る関数として定義します。) 実は、任意の環はこのようにして得られることが知られています。 より正確に言うと、与えられた環Rに対し、アフィンスキームと呼ばれるある種の空間Spec(R)が定まり、Rは空間Spec(R) 上の正則関数全体のなす環と自然に同一視されます。更に、環を考えることとアフィンスキームを考えることは本質的に同等であることが知られています。一般のスキームは、アフィンスキームをはり合わせることにより定義されます。 1950年代後半にグロタンディークによって定義されたこのスキームは、代数多様体(≈多項式で定義される図形)の概念を大きく一般化するもので、現在の代数幾何学・数論幾何学の基礎をなす概念です。 グロタンディークの提唱した形での遠アーベル幾何は、遠アーベルスキームの一般的な定義が見つかっていないなど、理論的にはまだまだ発展途上の状態ですが、既にいくつもの重要な結果が得られています。例えば、ノイキルヒ・内田の定理は、(グロタンディークが遠アーベル幾何を提唱する以前の結果ですが)遠アーベル幾何における一つの基本的な結果となっています。また、近年では、代数曲線やそのモジュライ空間の遠アーベル幾何の研究が、(本研究所を中心に)さまざまな角度から進められ、興味深い結果がいくつも得られています。このように、19世紀前半に生まれたガロア理論は、現代もなお強い生命力を持って進化しています。 つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/3
7: 132人目の素数さん [] 2025/02/01(土) 08:48:01.67 ID:lDxwqd7y つづき 数学者の日常 小平の消滅定理の一般化 ホッジ構造 非特異射影多様体のコホモロジーにはホッジ構造と呼ばれる構造が入ります。これは純ホッジ構造と呼ばれるものになっています。一般の代数多様体のコホモロジーには純ホッジ構造は入らないのですが、混合ホッジ構造と呼ばれる純ホッジ構造を拡張したものが入ります。 (引用終り) 以上 なお、 おサル=サイコパス*のピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets**) (Yahoo!でのあだ名が、「一石」) <*)サイコパスの特徴> (参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日 (**)注;https://en.wikipedia.org/wiki/Hyperboloid Hyperboloid Hyperboloid of two sheets :https://upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Hyperboloid2.png/150px-Hyperboloid2.png https://ja.wikipedia.org/wiki/%E5%8F%8C%E6%9B%B2%E9%9D%A2 双曲面 二葉双曲面 :https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/HyperboloidOfTwoSheets.svg/180px-HyperboloidOfTwoSheets.svg.png おサルさんの正体判明!(^^) スレ12 https://rio2016.5ch.net/test/read.cgi/math/1671460269/923 より ”「ガロア理論 昭和で分からず 令和でわかる #平成どうしたw」 昭和の末期に、どこかの大学の数学科 多分、代数学の講義もあったんだ でも、さっぱりで、落ちこぼれ卒業して 平成の間だけでも30年、前後を加えて35年か” ”(修士の)ボクの専攻は情報科学ですね”とも 可哀想に、数学科のオチコボレで、鳥無き里のコウモリ***)そのもので、威張り散らし、誰彼無く噛みつくアホ 本来お断り対象だが、他のスレでの迷惑が減るように、このスレで放し飼いとするw(^^ 注***)鳥無き里のコウモリ:自分より優れた数学DRやプロ数学者が居ないところで、たかが数学科のオチコボレが、威張り散らす姿は、哀れなり〜!(^^; なお 低脳幼稚園児のAAお絵かき 小学レベルとバカプロ固定 は、お断りです 小学生がいますので、18金(禁)よろしくね!(^^ つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/7
8: 132人目の素数さん [] 2025/02/01(土) 08:49:48.41 ID:lDxwqd7y つづき 再録します。おサルの傷口に塩ですw https://rio2016.5ch.net/test/read.cgi/math/1683585829/508 2023/06/11(日) 下記だねw(>>63再録) スレ主です 数学科オチコボレのサルさんw https://rio2016.5ch.net/test/read.cgi/math/1674527723/5 線形代数が分かっていないのは、あ な た! www 前スレより https://rio2016.5ch.net/test/read.cgi/math/1680684665/557 傷口に塩を塗って欲しいらしいなw >>406-407より以下再録 棚から牡丹餅というかw つまり ・私「正方行列の逆行列」(数年前) ↓ ・おサル「正則行列を知らない線形代数落ちこぼれ」 ↓ ・私「零因子行列のことだろ?知っているよ」 ↓ ・おサル「関係ない話だ!」と絶叫 ↓ ・おサル『正則行列の条件なら、「零因子行列であること」はアウトですね いかなる行列が零因子行列か述べる必要がありますから』 ↓ ・私「あんた、上記の自分の文章を読み返して おかしいと気づかないか?」 ↓ ・おサル『「0以外の体の元は乗法逆元を持たない」のつもりで 「零因子以外の行列は乗法逆元を持たない」と書いて ケアレスミスだと言い張りたいんだろうけど』 <解説> 1)何度か、アホが気づくチャンスあった 最初に”零因子”の意味を検索して知れば、「関係ない話だ!」と絶叫することもない (というか、”零因子”を知らないのは、ちょっと代数あやしいよねw) 2)『正則行列の条件なら、「零因子行列であること」はアウトですね いかなる行列が零因子行列か述べる必要がありますから』 に、私「あんた、上記の自分の文章を読み返して おかしいと気づかないか?」と指摘された時点で ”零因子”の意味を調べて理解すべきだったのだ 3)恥の上塗り『「0以外の体の元は乗法逆元を持たない」のつもりで 「零因子以外の行列は乗法逆元を持たない」と書いて ケアレスミスだと言い張りたいんだろうけど』 は、あまりにも幼稚。「ケアレスミス」の一言では片づけられないアホさ加減wwwwww 4)確かに、私の「正方行列の逆行列」は不正確な言い方ではあったが アホさるの自爆を誘ったとすれば、怪我の功名というか、誘の隙(さそいのすき)というべきかww ゆかいゆかい!ww つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/8
9: 132人目の素数さん [] 2025/02/01(土) 08:50:14.05 ID:lDxwqd7y つづき あほサルの続き さて 『なぜ、ZFC公理まで遡らなくても数学が出来るの?』スレより itest.5ch.net/rio2016/test/read.cgi/math/1731415731/771 2024/12/21 おサルさん 笑えるよ >>684-686 >>689 (引用開始) 正則性公理は ”∈-induction”と関係していて ZFC内の全ての集合について”∈-”による整礎関係を与え、 ∈に関する整礎帰納法である”∈-induction”の適用を可能とする 全順序とか余計な一言を書いたせいで大恥かいたな 高卒童貞 正則性公理は∈を整礎関係たらしめると同時に反射律 a∈a を否定するため順序関係たらしめない。 また正則性公理と関係無く推移律 a∈b ∧ b∈c ⇒ a∈c は成立しない。実際 {}∈{{}} ∧ {{}}∈{{{}}} は真だが、{}∈{{{}}} は偽。 >正則性公理は ”∈-induction”と関係していて >ZFC内の全ての集合について”∈-”による整礎な全順序関係を与え は大間違い >また…推移律 a∈b ∧ b∈c ⇒ a∈c は成立しない。 ヌォォォォ すまん・・・OTL 工学部卒の自己愛童貞と違うので土下座で謝罪 (引用終り) オレは、ここの次スレを立てることはしないが 自分の立てたスレが、数学板に3つある おサルさんの学力顕彰のために、3つスレで 次回のスレ立ての テンプレに入れるよ。そして、眺めてニヤリと笑うことにしよう 『正則性公理は∈を整礎関係たらしめると同時に反射律 a∈a を否定するため順序関係たらしめない』 か。妄言である! 数学科オチコボレさんだってねw ガッハハww (引用終り) ・整列集合 ja.wikipedia.org/wiki/%E6%95%B4%E5%88%97%E9%9B%86%E5%90%88 『(選択公理に同値な)整列可能定理は、任意の集合が整列順序付け可能であることを主張するものである。整列可能定理はまたツォルンの補題とも同値である』 『実数からなる集合 正の実数全体の成す集合 R+ に通常の大小関係 ≤ を考えたものは整列順序ではない。例えば開区間 (0, 1) は最小元を持たない。一方、選択公理を含む集合論の ZFC 公理系からは、実数全体の成す集合 R 上の整列順序が存在することが示せる。しかし、ZFC や、一般連続体仮説を加えた体系 ZFC+GCH においては、R 上の整列順序を定義する論理式は存在しない[1]。ただし、R 上の定義可能な整列順序の存在は ZFC と(相対的に)無矛盾である。例えば V=L は ZFC と(相対的に)無矛盾であり、ZFC+V=L ではある特定の論理式が R(実際には任意の集合)を整列順序付けることが従う。』 つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/9
10: 132人目の素数さん [] 2025/02/01(土) 08:50:38.73 ID:lDxwqd7y つづき ・自然数 ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0 『形式的な定義 自然数の公理 以上の構成(注 ノイマン構成)は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。 例えば、0 := {}, suc(a) := {a} と定義したならば、 0 := {} 1 := {0} = {{}} 2 := {1} = {{{}}} 3 := {2} = {{{{}}}} と非常に単純な自然数になる』 ・0<1<2<3<・・・ {}<{{}}<{{{}}}<{{{{}}}}<・・・ ここで {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・ と書ける 何が言いたいか? {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・を逆に辿れば {}<{{}}<{{{}}}<{{{{}}}}<・・・ となり 0<1<2<3<・・・ となる ・つまり、{}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・ において ∈を<に書き換える そうして、{}→0、{{}}→1、{{{}}}→2、{{{{}}}}→3、・・・ と順序数の背番号がついていると思え あるいは、例えば {{{}}}→2 ならば、括弧{}の多重度を基準に整列していると考えれば良い(括弧{}の多重度-1が、順序数に相当している) ・このように、列 {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・を、順序関係<に置き換えて {}<{{}}<{{{}}}<{{{{}}}}<・・・ として、整列集合と考えることができる(整列可能定理の主張はこれ) ・おサルさん、なにをとち狂ったか、列 {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・ が、整列していることを否定する 上記『{}∈{{{}}} は偽』とか、勝手な妄想を沸かす。ほんと、エンタの王で笑いを取る名人だね 私には、単なるアホとしか思えないがw ;p) 以上 あと <乗数イデアル関連(含む層)>の話や 文学論、囲碁の話もあります これも、5chらしくて良いと思いますw テンプレは、以上です http://rio2016.5ch.net/test/read.cgi/math/1738367013/10
14: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/02/01(土) 17:57:40.68 ID:lDxwqd7y 前スレ 再録 rio2016.5ch.net/test/read.cgi/math/1735693028/907 いつもお世話になっている alg-d 壱大整域氏 選択公理→ (整列可能定理) これ分かり易いかも ”写像 g:λ→X∪{∞} を g(α ) := f( X\{g(β)|β<α} )”で 順序数 → X∪{∞} (実質 Xのこと) なる g を 導入しているんだ で、写像 g の全単射を 言う なるほどね そうすると、置換公理を使う証明は、無理筋かも 循環論法になる恐れがある、多分 (不可能の証明は 難しいので いまは深入りしないことに) (参考)(蛇足だが P(X)は、Xの冪集合。なお。原サイトの方が見やすいよ) alg-d.com/math/ac/wo_z.html alg-d 壱大整域 トップ > 数学 > 選択公理 > 整列可能定理とZornの補題 2011年11月13日更新 整列可能定理とZornの補題 定理次の命題は(ZF上)同値. 1.選択公理 2.任意の集合Xは整列順序付け可能 (整列可能定理) 3.順序集合Xが「任意の部分全順序集合は上界を持つ」を満たすならば,Xの極大元が存在する.(Zornの補題) 証明 (1 ⇒ 2) Xを集合とする.Xが整列可能である事を示す. 順序数λで,¬|λ|≦|X| となるものを取る. 選択公理を A := P(X)\{ ∅ } に適用して,選択関数 f: A→X を得る. Xに含まれない元 ∞ ∉ X を用意して,f( ∅ ) := ∞ と定義することで f を f: P(X)→X∪{∞} に拡張しておく. 写像 g:λ→X∪{∞} を g(α ) := f( X\{g(β)|β<α} ) で定義する. α, β<λに対して,g(α)=g(β)≠∞ならば,α=βである. ∵β<αであるとする.g(α)≠∞だから,選択関数 f の性質より g(α) = f(X\{g(β)|β<α}) ∈ X\{g(β)|β<α} となる.即ち g(α) ∉ { g(β) | β<α } だから g(α)≠g(β) である. よって,もし g(α) = ∞ となるα<λが存在しなければ,g:λ→X は単射となる. これは ¬|λ|≦|X| に矛盾する.故に g(α) = ∞ となる α<λ は存在する. そこで γ := min{ α<λ | g(α)=∞ }と置く.このときg|γ: γ→X は全単射である. ∵∞ = g(γ) = f( X\{g(β)|β<γ} )だから,X\{g(β)|β<γ} = ∅,つまりg|γは全射でなければならない.単射性は先に示したことから明らか. よってこれによりXを整列する事ができる. (2 ⇒ 3)略す (3 ⇒ 1)略す おまけ (2⇒1)略す http://rio2016.5ch.net/test/read.cgi/math/1738367013/14
15: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/02/01(土) 18:17:16.93 ID:lDxwqd7y 前スレより 再録 rio2016.5ch.net/test/read.cgi/math/1735693028/913 alg-d 壱大整域氏 >>907の 証明 (1 ⇒ 2) の本質は Xの冪集合 P(X)\{ ∅ } に 選択公理の選択関数 を適用すると それが 如何なる 選択関数を採用したとしても ”写像 g:λ→X∪{∞} を g(α ) := f( X\{g(β)|β<α} )” なる g を 導入して 順序数 → X∪{∞} (実質 Xのこと) の 全単射 写像 g が構成できる 順序数と Xとの 全単射 が構成できるということは、 即ち Xに整列順序が導入できたということ (引用終り) 簡単に補足する いま、ミニモデルで 集合X={a,b,c,d}を考える 冪集合を作る P(X)={ {a,b,c,d}, {a,b,c},{a,b,d},{a,c,d},{b,c,d} {a,b},{a,c},{b,c}, {a,b},{a,d},{b,d}, {a,c},{a,d},{c,d}, {b,c},{b,d},{c,d}, {a},{b},{c,},{d}, ∅ } となる 説明すると、最初にX 自身 4元の集合があり 次に、X から元が一つ減った 3元の集合があり 次に、X から元が二つ減った 2元の集合があり 次に、X から元が三つ減った 1元の集合があり 最後に 元が無くなった 空集合がある で、Xから任意の元を取った 集合、 必ず 3元の集合が存在し その ある3元の集合から 任意の元を取った 集合、 必ず 2元の集合が存在し その ある2元の集合から 任意の元を取った 集合、 必ず 1元の集合が存在し という構造を、べき集合が有している そのべき集合の構造を うまく使ったのが >>14の alg-d 壱大整域氏の証明だと いうことです 繰り返すが、上記有限の集合で例示したのと同じことを 順序数をうまく使うことで、無限集合に拡張し 適用したってことでね http://rio2016.5ch.net/test/read.cgi/math/1738367013/15
17: 132人目の素数さん [] 2025/02/01(土) 18:30:23.45 ID:YIkJbYsl >>14 で、以下はいつ答えるの? まさか分かってないのに分かってるふりしてたの? (引用開始) >順序数は、整列順序であるから >Aに整列順序が導入できた 順序数の通常の大小関係が整列順序だとなぜAに整列順序が導入できたことになるか分かる? (引用終了) http://rio2016.5ch.net/test/read.cgi/math/1738367013/17
26: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/02/01(土) 20:06:10.67 ID:lDxwqd7y ”<公開処刑 続く> (『 ZF上で実数は どこまで定義可能なのか?』に向けて と (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”] 『 ZF上で実数は どこまで定義可能なのか?』の前に Zornの補題 をやります ;p) まず、ここから (参考)>>14より 再録 alg-d.com/math/ac/wo_z.html alg-d 壱大整域 トップ > 数学 > 選択公理 > 整列可能定理とZornの補題 2011年11月13日更新 整列可能定理とZornの補題 定理次の命題は(ZF上)同値. 1.選択公理 2.任意の集合Xは整列順序付け可能 (整列可能定理) 3.順序集合Xが「任意の部分全順序集合は上界を持つ」を満たすならば,Xの極大元が存在する.(Zornの補題) 証明 (3(Zornの補題) ⇒ 1(選択公理)) {X_λ}_{λ∈Λ}を非空集合の族とする. A := { g:Σ→∪_{λ∈Λ} X_λ | Σ⊂Λ, 任意のλ∈Σに対してg(λ)∈Xλ } としてAに ⊂ で順序を入れる.B⊂Aを部分全順序集合とするとき ∪g∈B g ∈ A は B の上界である. 即ち A はZornの補題の仮定を満たす.故に極大元 f∈A を持つ. もし dom(f)≠Λ であれば f が極大であることに反するので dom(f)=Λ となる.故に f は選択関数である. http://rio2016.5ch.net/test/read.cgi/math/1738367013/26
28: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 11:23:54.05 ID:5scbwZz/ >>22 (引用開始) >Xの元を すきな順番に整列できる 大間違い。 順番は選択関数で一意に定まる。 (引用終り) <反証> 1)選択公理(選択関数)と整列可能定理が 同値であることを認めるとする 2)集合Xについて、整列可能定理を適用する Xから好きな元x1∈Xを取り出す。残り X':=X\ {x1} X'から好きな元x2∈X'を取り出す。残り X'':=X'\ {x2} すきなだけ繰り返す。その後に残ったものに 整列可能定理を適用する 3)さて、上記2)で そもそも 整列可能定理とは 最後が空集合になるまで繰り返して良いとするものだった なので、整列可能定理における ”お好きなように”は、選択公理(選択関数)でも同じ 4)実際、下記 alg-d 壱大整域 整列可能定理 ⇒ 選択公理(選択関数)の証明で ”整列可能定理により∪_{λ∈Λ}X_λを整列し f(λ) := (X_λの最小元) とすれば f が選択関数である” とあるが、和集合 ∪_{λ∈Λ}X_λ の整列を 好きにして良いならば、 f(λ) := (X_λの最小元) も好きにできる。つまり、f 選択関数 も好きにできる■ 余談だが、”Take your choice”(好きなものを取りなさい)goo辞書 dictionary.goo.ne.jp/word/en/Take+your+choice./ choice には、お好きなように という意味がある なお、存在のみで 具体的でない場合も可 例えば、実数Rの整列では、分るところのみを お好みにして、残りの 不明部分は 存在のみの公理任せも可!w ;p) 公理なんだものww (参考)(原サイトの方が見やすいよ)>>14より alg-d.com/math/ac/wo_z.html alg-d 壱大整域 トップ > 数学 > 選択公理 > 整列可能定理とZornの補題 2011年11月13日更新 整列可能定理とZornの補題 定理次の命題は(ZF上)同値. 1.選択公理 2.任意の集合Xは整列順序付け可能 (整列可能定理) 3.順序集合Xが「任意の部分全順序集合は上界を持つ」を満たすならば,Xの極大元が存在する.(Zornの補題) 証明 (2⇒1) {X_λ}_{λ∈Λ}を非空集合の族とする.整列可能定理により∪_{λ∈Λ}X_λを整列し f(λ) := (X_λの最小元) とすれば f が選択関数である. http://rio2016.5ch.net/test/read.cgi/math/1738367013/28
33: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 12:26:08.50 ID:5scbwZz/ >>28 (引用開始) >Xの元を すきな順番に整列できる 大間違い。 順番は選択関数で一意に定まる。 (引用終り) 典型的な、大学数学 オチコボレさんのパターンか? ;p) 下記ですね 下記の 謎の数学者氏 いま 阪大の数学科 准教授だが 彼のいう MM mathematical maturity 数学的成熟度 が、低いね 30年前 数学科修士卒で あれから30年でこれかい? ”選択関数”の 理解が 上滑りだよ だから、箱入り無数目で 御大が 指摘する 数学の事項が 全く理解できないんだよね、あなたは!www 誤解・無理解の選択公理(選択関数)で、ワーワー主張するけど、 その殆どが、大外しだよww ;p) (参考) youtu.be/78os69XZrSk?t=1 大学に入ったら数学が突然難しくなる理由。日本の数学科の問題点。 謎の数学者 2021/04/06 #数学者への道 文字起こし 0:00 はいみなさんこんにちは数学者です 0:04 えっと今回はですねこういう話をしていこうかなと思うんですね 大学に入って数学ができなくなる理由ということなんですけれどコレですねあの皆さん 経験した方あるかもしれないですけれどやはりですね あの大学に入って突然ですね数学が できなくなるということがですね結構あるんですね 2:12 極限の厳密な定義というやつですよねエプシロンでルターによるですねえまあ極限や 微分の厳密な定義 そういった ことを習ってさらにですねいわゆる線形代数と呼ばれているやつですね 2:40 実は 学部自体は日本だったんですけれど数学科ではなかったんですね私 学部時代機械工学を 専攻したんですけれどそれでもですね大学に入って1年目でどういう授業どういう数学 の授業を取らされたかというとやはりここにあるようなイプシロンデルタとか線形 代数そういったところからですね入っていったんですね ところがですねやはりこれは 私の考えではいきなりですねあのこういう ところから入るというのはちょっとですね難しいんですねとりわけつの日本の標準的な あのすぐ高校の数学のカリキュラム そういったものを終えたばかりで突然ですね大学に入ってイプシロン デルタ法や線形 代数というのは多少ですねちょっと多少どころじゃないかもしれない ちょっと急激に難しくなりすぎてるんですねつまりこれゲームバランスが崩壊している というやつなんです いわゆる数学的成熟度 mathematical maturity と書きますけれど 4:02 日本のですね大学受験を 突破したその時点での標準的ないわゆる 数学的成熟 mathematical maturity ではですねこういったところはなかなか太刀打ちできないんですね 単純にレベルが足りないんですドラクエで言えばですねまぁ突然ゲームが難しくなると 7:17 私のこの数学の学び方というシリーズで 今のところですねいろいろお話してますのでまだ見てない方はですね 動画説明欄にリンクが貼ってありますので見ていただきたいんですけれど 10:11 あの今回はこれで終わります http://rio2016.5ch.net/test/read.cgi/math/1738367013/33
37: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 18:25:21.05 ID:5scbwZz/ >>34 補足 下記の ツォルン(Zorn)の補題 → ツェルメロ(Zermelo)の整列定理の証明 ここでも、空集合以外の部分集合の順序構造を使う(詳しくは下記ご参照) 直感的には、>>15で示した 例示 ミニモデルで 集合X={a,b,c,d} で 冪集合 P(X)={ {a,b,c,d}, {a,b,c},{a,b,d},{a,c,d},{b,c,d} {a,b},{a,c},{b,c}, {a,b},{a,d},{b,d}, {a,c},{a,d},{c,d}, {b,c},{b,d},{c,d}, {a},{b},{c,},{d}, ∅ } これで 包含関係 で 順序が入る {a,b,c,d}⊃{a,b,d}⊃{a,b}⊃{a}⊃∅ で、整列順序の極大元になる この前後の差分 c>d>b>a Xので整列になる この極大は、幾通りもある(どれを選ぶも任意!!です) それを、ZFCの証明として書くと 下記です 繰り返すが、上記の例示を 任意無限集合で ZFCの証明として書くと 下記 (参考) ieyasu03.web.エフシーツー.com/contents/09_Mathematics.html(URLが通らないので検索たのむ) 基礎物理から半導体デバイスまで 集合・位相 ieyasu03.web.エフシーツー.com/Mathmatics/36_Well-ordering_theorem.html(URLが通らないので検索たのむ) §36 整列定理 2023/04/07 1. 整列定理 ツォルン(Zorn)の補題 [1] を用いて、次のツェルメロ(Zermelo)の整列定理が証明される。以下ではその証明について述べる [2]。 【定理1】(整列定理) A を任意の集合とするとき、A に適当な順序関係 ≦ を定義して、(A,≦) を整列集合とすることができる。 【証明】A の部分集合上には、一般に、幾通りもの順序関係が定義される。 いま、A の部分集合 W とそこで定義された順序関係 O との組である W を台とする順序集合 (W,O) を考え、 このような組のうち、整列集合となっているものの全体を m とする(図1)。すなわち 略す 【ツォルンの補題】 [1] によって (m,ρ) には極大元 (W0,O0) が存在する。 このとき、実は W0=A でなければならないことが次のように示される。 もし、略 参考文献 1) 「ツォルンの補題」 2) 松坂和夫 数学入門シリーズ1『集合・位相入門』 p.113 岩波書店(2018/11/06) 3) 「整列集合における補題」 4) 「順序集合」 5) 「選択公理」 6) 「整列集合の比較定理」 7) 「集合の濃度」 (上記とほぼ同じ証明の動画) ヨーツベ/EXPGtoOzpb8?t=1 数学】Zornの補題から整列可能定理を導く!!!【VOICEROID解説】 現役数学科院生・うどん 2022/01/17 (コメント) @イデアル-d6p 9 か月前 分かりやすいです @財津匠 2 年前 とても理解の助けになりました! http://rio2016.5ch.net/test/read.cgi/math/1738367013/37
42: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 19:26:13.17 ID:5scbwZz/ >>39 (引用開始) >Xの元を すきな順番に整列できる P(X)-{φ}からその要素を選択する選択関数をどう決めるか次第でね ただ選択関数を決めてしまったら順番は一意だけど (引用終り) ふっふ、ほっほ 1)選択関数の一意性を主張するような 論文、テキスト(教科書)、解説は皆無 2)自分で、『固定』!とか 宣言しない限り ”一意性”は、実現できない 3)つまり、あなたの選択関数と、私が(思う)選択する選択関数w は、異なって良いのです!!ww ;p) (参考) https://ja.wikipedia.org/wiki/%E4%B8%80%E6%84%8F%E6%80%A7_(%E6%95%B0%E5%AD%A6) 一意性 (数学) 一意性(いちいせい、英語: uniqueness)とは数学分野において、注目している数学的対象が「存在するならばただ一つだけである」或いは「ただ一つだけ存在している(つまり「存在して、かつ、存在するならばただ一つだけである」の意)」という性質である。 一意性の証明 ある対象が一意性を満たすかどうかを証明する方法は、始めに目的の条件を持つ対象が存在することを証明し、 次にそのような対象がもう一つあり(例: aと b、それらが互いに等しいこと (すなわち a=b ) を示すことで得られる。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/42
47: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 19:45:40.82 ID:5scbwZz/ >>41 (引用開始) >突っかかるやつへの対抗ですよw ;p) 君自身がコピペした内容理解してないから無意味 君、Jechの証明理解してないじゃん (引用終り) ふっふ、ほっほ 1)もし 引用部分が正しいとするね そうすると、私の書いていることは 基本は 引用部分のURLからの再引用(2度目の引用)であります ;p) あるいは、引用部分のURLからの必然の事項となっています 2)従って、理解している いない には 関係なく ツッコミどころは、ない!w (そこを たまに誤解して、”再引用(2度目の引用)”を 私個人の意見と誤解して ツッコミ入れる人居ますw。それ あなたですw) 3)Jechの証明、前スレより下記だね en.wikipedia の ”sup{α∣aα is defined}”が分らんと言っていた人 あなたでしょ?w 私も 誤解がありましたが、>>14の alg-d 壱大整域氏 の証明で、ようやく理解できました ご苦労さまですw ;p) 前スレ 808より (参考)(再掲) 631より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7. (引用終り) Thomas Jechの 証明 再録(前スレ 848より) P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■ (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1738367013/47
63: 132人目の素数さん [sage] 2025/02/02(日) 23:30:38.35 ID:5wVsPQ6t >わからない いや、>>55の言ってることはよく分かりますけど。 「御大」だからといって、何でも知ってるわけではない。 事実、「双曲平面でのバナッハ-タルスキーのパラドックス」 は知らなかったし、酷いところでは、「箱入り無数目さえ」 理解できなかった。もっとも記事をちゃんと読んだのか怪しいが。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/63
79: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/03(月) 11:25:44.20 ID:Kqr4zqHs >>64-65 ID:bvvTKD+8 は、御大か 巡回ご苦労様です なるほど ご指摘の思い当たる点を 自分で赤ペンすると (引用開始) >>15で示した 例示 ミニモデルで 集合X={a,b,c,d} で 冪集合 P(X)={ {a,b,c,d}, {a,b,c},{a,b,d},{a,c,d},{b,c,d} {a,b},{a,c},{b,c}, {a,b},{a,d},{b,d}, {a,c},{a,d},{c,d}, {b,c},{b,d},{c,d}, {a},{b},{c,},{d}, ∅ } これで 包含関係 で 順序が入る {a,b,c,d}⊃{a,b,d}⊃{a,b}⊃{a}⊃∅ で、整列順序の極大元になる この前後の差分 c>d>b>a Xので整列になる この極大は、幾通りもある(どれを選ぶも任意!!です) (引用終り) 1)ここの素朴(ナイーヴ)な議論が、まずいってことですね 2)つまり、無限集合では ヒルベルトホテルのパラドックスが起きる ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%81%AE%E7%84%A1%E9%99%90%E3%83%9B%E3%83%86%E3%83%AB%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9 例えば、順序数ω から 一つ減らしても ωのままです (順序数の演算ご参照 ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 ) 3)この素朴な議論を、ZFC内で 正当化したのが >>14の alg-d 壱大整域氏 の証明で そこで 必要なのが 1)選択公理(及びそれと同値のZorn補題) 2)順序数 との対応付け ということですね これによって 当初の素朴(ナイーヴ)な議論のスジが、ほぼZFC内の議論に変換できている 4)ここで、注目すべきは 冪集合 P(X)には、⊃ による 順序構造とか X={a,b,c,d}を頂点にして 最底辺が 空集合∅ という 階層構造とかがある (一方 X自身には そういう構造の仮定はない) ここらを潜在的な構造として うまく ZFC内で 正当化しているのが、 >>14の alg-d 壱大整域氏 の証明です なお >>37の ツォルン(Zorn)の補題 → ツェルメロ(Zermelo)の整列定理の証明 も 同様です http://rio2016.5ch.net/test/read.cgi/math/1738367013/79
111: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 00:07:04.95 ID:siKztgRy >>108 >うん、人の意思があーとか言う前に∀と∃の違いからやり直すべき 分って無いんか? 例を挙げよう 下記 選択公理と等価な命題で、”ベクトル空間における基底の存在”があり 次元定理が導かれる この応用として、下記に 具体的な {(1,1), (−1,2)} が R2 の基底を成すことの証明で ”次元定理による証明”として、極めて簡潔な証明があるよ 直接法と比べて見れば良い 抽象的な存在定理から、具体的なベクトルが その空間における基底であることが証明できる■ (参考) ja.wikipedia.org/wiki/%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 選択公理 選択公理と等価な命題 ベクトル空間における基底の存在 全てのベクトル空間は基底を持つ(1984年にen:Andreas Blassによって選択公理と同値であることが証明された。ただし、正則性公理が必要になる)。 ja.wikipedia.org/wiki/%E5%9F%BA%E5%BA%95_(%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%AD%A6) 基底 (線型代数学) 任意のベクトル空間は基底を持つ(このことの証明には選択公理が必要である)。一つのベクトル空間では、全ての基底が同じ濃度(元の個数)を持ち、その濃度をそのベクトル空間の次元と呼ぶ。この事実は次元定理(英語版)と呼ばれる(証明には、選択公理のきわめて弱い形である超フィルター補題が必要である)。 基底の存在 例 ベクトル空間 R2 を考える 一つの数学的結果が複数のやり方で証明できることは普通であるが、ここでは {(1,1), (−1,2)} が R2 の基底を成すことの証明を三通りほど挙げてみる。 直接証明 定義に忠実に、二つのベクトル (1,1), (−1,2) が線型独立であることと R2 を生成することとを示す。 線型独立性 実数 a, b に対して線型関係 略す 全域性 二つのベクトル (1,1), (−1,2) が R2 を生成することを示すには、いま (a, b) を R2 の勝手な元として、 略す 次元定理による証明 (−1,2) は明らかに (1,1) の定数倍ではないし、(1,1) も明らかに零ベクトルではないから、二つのベクトル (1,1), (−1,2) は線型独立。これを延長して基底が得られるはずだが、R2 の次元は 2 だから、{(1,1), (−1,2)} は既に R2 の基底を成している。 正則行列を用いた証明 略す http://rio2016.5ch.net/test/read.cgi/math/1738367013/111
116: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 10:56:52.68 ID:+HgMDnV2 >>111 補足 これ、典型的な存在定理(公理)の使い方 具体的な R2の線形空間の 二つのベクトル (1,1), (−1,2) が、基底になっている 言い換えると、 (1,1), (−1,2) を、基底に取れる 証明を見ると、背後の数学の構造が分かる 証明から、基底の二つのベクトル が、かなり自由に選択できることが分かる 典型例は、 (1,0), (0,1) だが、これが 一例にすぎないことも分かる 選択公理は、選択関数の存在しか言わないが、選択が具体的であることを妨げない (1,1), (−1,2) を選択しようが、 (1,2), (−3,2) を選択しようが、 (1,0), (0,1) を選択しようが、かまわない また、ある具体的な対象に対して、存在定理(公理)を適用して 分かること(主張できること)があるんだね これ、典型的な存在定理(公理)の使い方 http://rio2016.5ch.net/test/read.cgi/math/1738367013/116
151: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 16:58:55.57 ID:+HgMDnV2 >>137-140 >>選択関数を好きに構成できると? > 「構成」はできない > ただ、考えられる選択関数は無数にある ありがとうございます。 1)そもそも、公理とは 条件さえ許せば 無制限に適用できる 存在定理(公理)とは、ある条件の数学対象が存在することを主張する その数学対象は、存在定理の場合には、具体的な構成が与えられていない が、具体的な構成が与えられる場合を含んでよい(そうしなければ、構成の有無で 場合分けが必要なるw) 有限集合と、無限集合の区別も同様で、選択公理は無限集合限定という制約はない(勝手に無限集合限定の制約があると思い込む人あり) 存在は、一つに限らない。当然 一つの場合もあるだろうが、限られない (例えば、単元集合 {xi} i∈λ の選択関数は一意だが、二元集合 {xi,xj} i,j∈λに対する 選択関数は一意ではなくなる) 2)こういう、当たり前の理解が すべって 錯乱している人がいる気がする http://rio2016.5ch.net/test/read.cgi/math/1738367013/151
163: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 18:03:46.42 ID:+HgMDnV2 >>156-158 選択公理および選択関数について トンチンカンな発言をしている人がいた だから、当たり前のことを、強調しただけですよ (^^ >だから命題ごとに個別に規定要(理論ごと規定する場合は「以下、断り無き場合〇〇公理を前提とする」などと表記) 大体は、ほぼ ZFCベース だから、特に断りがない場合は、ZFCベースがデフォ(デフォルト)ですよ たまに、「この証明には、選択公理が必要」とか、後出しで 注意を書く場合あり (^^ http://rio2016.5ch.net/test/read.cgi/math/1738367013/163
167: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 18:21:51.18 ID:+HgMDnV2 >>100-101 >治らないコピペ癖 ID:oyw47Vnz >ほっとけ ID:pX4W9Cg1 ID:pX4W9Cg1は、御大ね ID:oyw47Vnzは、おサル>>7-10 かな? 1)院試合格までは、数学の実力は主に試験で測られる 限られた場所で、カンニング無しで、限られた時間内で どれだけ解けるか 2)しかし、院試合格の後の 数学の実力は なんでもあり カンニングありで、誰に相談しても 聞いても良い 時間制約は、あっても年単位 3)社会人でも、上記2)と似たようなもの 特に、”カンニングありで、誰に相談しても 聞いても良い” さて、ここ 天下の落書き 便所板で 多くの人が タネ本があるのに それを隠して あたかも 自分が 考えたように 書いている 院試の答案のように で、しばしば エラーが混じる 赤ペンが必要だ 自分が、そのようにして 赤ペンが必要な エラー混じりのカキコをして しかし、タネ本を隠して 自分の実力のように見せて ハナタカしている だが、ハナタカできるのは 独自の数学理論を創出して 論文書いて、教科書(テキスト)を書いて、大学で講義したり そういう人だけでしょ? なんか、タネ本でカンニングしているのに そこを偽装して、ハナタカしている それって、見え見え。たいがい 底が見えていますww ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/167
182: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 07:51:08.42 ID:Md2R2j9H >>180 >>任意のベクトルを無限個のベクトルの線形結合で表すことである.ヒルベルト空間では,これを実現する正規直交基底を取ることがいつでもでき,有限次元空間とよく似た話が無限次元でも展開できる.フーリエ級数はその具体例として大変重要なものである. >これ、選択公理を使うだろうと思って調べていた >下記 山上滋先生 名大 関数解析入門 『命題4.5.ヒルベルト空間の正規直交基底は必ず存在する。(全然一意的ではないが。) >Proof.基本的なアイデアはの直交化であるが、正式にはのZorn補題を使う。各自、確かめよ』 >ですね (^^ <補足> 1)Zorn補題は、選択公理と同値 2)Zorn補題(選択公理)で、通常のベクトル空間(基底の有限和)から 基底の無限個のベクトルの線形結合を使う ヒルベルト空間まで その空間の基底の存在と、次元(ベクトル空間の場合 基底の集合の濃度を意味する。可算にする場合が多いらしい)が決められる 3)『全然一意的ではないが』 by 山上滋先生 名大 存在のみのZorn補題(選択公理)で、言える 4)その存在定理の典型的な、使い方が>>110だね 同様に、例えば、ヒルベルト空間で ある特別な基底候補を使いたいとき まず、上記 命題4.5 に照らしてみれば良い そうすれば、その基底候補が、実際に基底として使えることが分る フーリエ級数が、典型例>>160 "Zorn補題(選択公理)は、存在しか言えないから 具体的なこと言えない"と思った あなた それ勘違いですよ 存在の公理(定理)だから、適用範囲が広い そして、ある空間の 基底の存在定理、次元定理から 具体的な 基底候補が、実際の基底として採用できることが分る http://rio2016.5ch.net/test/read.cgi/math/1738367013/182
192: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 11:10:23.00 ID:hl9U/ln8 ”<公開処刑 続く> (『 ZF上で実数は どこまで定義可能なのか?』に向けて と (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”] >>185-188 >あきらめたらそこで試合終了ですよ ふっふ、ほっほ こっちは、<公開処刑 続く> (あほ二人の”アナグマの姿焼き")のつもり しかし、低レベルのバトルでは、観客も面白くないだろうから いまは おサル>>7-10の、選択公理(選択関数)の誤解・無理解を 徹底的に あぶりだしているのですw ;p) おサルにしたら あきらめたらそこで試合終了 だわなw がんばれよ、おサルww ;p) さて >>185 (引用開始) > ある空間の 基底の存在定理、次元定理から > 具体的な 基底候補が、実際の基底として採用できることが分る じゃ、RをQ上の線形空間としてみたときの基底を、具体的に構成してみてくれる? できるものならな (引用終り) ・いま、”具体的な 基底候補”があれば という話だ それに対して、具体的に構成できないことを持ち出しても 反論になってないぞw ;p) ・RをQ上の線形空間としてみたときの基底 (R/Qで) すべての基底を 具体的に明示することはできないが ある有限n個の 無理数で 基底 b1,b2,・・,bn を選んで、それらが Q上 一次独立にはできそうだな そして、残りの部分を 存在定理に丸投げすれば、良い n → 可算無限 にできそうな気がする (すぐには 成否の判断ができないが) そして、残りの部分を 存在定理に丸投げすれば、良いw http://rio2016.5ch.net/test/read.cgi/math/1738367013/192
197: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 11:54:28.92 ID:hl9U/ln8 >>192 補足 >n → 可算無限 にできそうな気がする (すぐには 成否の判断ができないが) 例えば √2(=2^1/2), 2^(1/3), 2^(1/4),・・ 2^(1/m),・・ 2^(1/n),・・・ で、任意 2^(1/m) - 2^(1/n) (m≠n)が 有理数でなければ良い あるいは √2(=2^1/2), 2^(1/2)^2, 2^(1/2)^3,・・ 2^(1/2)^m,・・ 2^(1/2)^n,・・・ で、任意 2^(1/2)^m - 2^(1/2)^n (m≠n)が 有理数でなければ良い mとnの2重数学的帰納法で証明できるかも・・、しらんけど http://rio2016.5ch.net/test/read.cgi/math/1738367013/197
202: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 13:33:23.30 ID:hl9U/ln8 <公開処刑 続く> (『 ZF上で実数は どこまで定義可能なのか?』に向けて と (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”] >>199 (引用開始) >n → 可算無限 にできそうな気がする (すぐには 成否の判断ができないが) >mとnの2重数学的帰納法で証明できるかも・・、しらんけど できません。 数学的帰納法の結論は「任意の自然数に関する命題P(n)が真」です。 高校数学からやり直した方が良いのでは? (引用終り) ふっふ、ほっほ それ、下記の”F線形空間F[x]は任意の自然数より大きい次元の部分空間を持つから無限次元である” の証明 by 都築暢夫 広島大 (いま東北大) が間違っていると? それ 都築暢夫先生に教えてあげてね!w ;p) なお、おサルさん>>7-10は 存在を示す 選択公理(選択関数)のポジティブな面を見ようとせず ネガティブな面のみを強調するが、それ 自分の数学レベルの低さを自白しているに等しい (参考) (rio2016.5ch.net/test/read.cgi/math/1736907570/16 より再録) www.math.sci.hiroshima-u.ac.jp/algebra/member/files/tsuzuki/04-21.pdf 代数学I 都築暢夫 広島大 F を体とする P3 例3.2.多項式環F[x]. F[x]nは1,x,··· ,xnを基底に持つn+1次元線形空間である F線形空間F[x]は任意の自然数より大きい次元の部分空間を持つから無限次元である 証明. 1,x,··· ,xnがF[x]nの基底になること: 1,x,··· ,xnがF[x]nを生成することは明らか a0,··· ,an∈Fに対してa0+a1x+···+anxn=0とするとき、a0=a1=···an=0となることをnに関する帰納法で証明する n=0のときは明らか。n−1まで成り立つとする。x=0とすると、a0=0である (a1+ a2x+···+anxn−1)x=0より、a1+a2x+···+anxn−1=0である 帰納法の仮定から、a1=···an=0となる。よって、1,x,··· ,xnは一次独立である したがって、1,x,··· ,xnはF[x]nの基底になる■ (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1738367013/202
205: 132人目の素数さん [] 2025/02/05(水) 13:52:05.72 ID:wxM+XkyV >>202 好きな順番で整列できるなら、実数全体の集合上の整列順序をあなたの好きなように作って示して下さい。 できるできる詐欺でないなら。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/205
206: 132人目の素数さん [sage] 2025/02/05(水) 17:17:17.87 ID:iZ38Xgef >>200 >>201 >> n → 可算無限 にできそうな気がする > >君、乙? >>1だよ >任意の実数が、2のn乗根の有理数倍の有限和で表せる 任意の有理整数nに対して2のn乗根の有理数倍の有限和は実代数的数で 実数の超越数はこの形の有限和で表せないから、その命題が偽であることはすぐ分かる 選択公理を仮定すれば、両方共に0ではない有理数 a≠0、b≠0 の 有理係数の γ=lim_{n→+∞}(1+…+1/n−log(n+a)) a>-1 に関する一次方程式 aγ=b の解 γ=b/a が存在するから、 その系としてγは有理数であることが示される 選択公理を仮定せずにオイラー・マクローリンの総和公式を使って 直接計算してγの具体的な値を求めることはまだ出来ていない 有理数γの分数の桁数が高々何桁かもまだ分からない 解析をしていれば特に違和感を持たないだろうけど、 γ=lim_{n→+∞}(1+…+1/n−log(n)) は病的な極限といえる http://rio2016.5ch.net/test/read.cgi/math/1738367013/206
208: 132人目の素数さん [] 2025/02/05(水) 19:37:45.65 ID:elkEtgQ/ >>206 乙は統合失調症 1は学習障害 http://rio2016.5ch.net/test/read.cgi/math/1738367013/208
214: 132人目の素数さん [sage] 2025/02/06(木) 06:34:45.22 ID:YqLfsVRy >>208 私は統合失調症ではないと何回いわせれば分かるのだ 任意に a>-1 なる実数を取ると得られるオイラーの定数γに関する極限 γ=lim_{n→+∞}(1+…+1/n−log(n+a)) について、γに収束する実数列 {a_n} の第n項 a_n を a_n=1+…+1/n−log(n+a) としたとき、aの取り方によって実数列 {a_n} は γに収束する単調減少列かγに収束する単調増加列 のどちらか一方かつその一方に限りなる こういう病的な現象が得られる元のγの定義式の極限 γ=lim_{n→+∞}(1+…+1/n−log(n)) は病的な極限である。γは正の実数だから、 この種の病的な極限値γが有理数か無理数を判定するときは、 可算選択公理を仮定して、任意の実数に対して全単射が存在して 一意に定まる正則連分数を使って γが無理数であると仮定してγに関する無限展開された 正則連分数で背理法で考えて矛盾を導けばよい そうすれば、可算選択公理によりγに関する正則連分数は 有限展開される連分数だから、γは有理数であると結論付けられる いっていることは>>206と同じ http://rio2016.5ch.net/test/read.cgi/math/1738367013/214
258: 132人目の素数さん [] 2025/02/06(木) 09:54:19.99 ID:jBYaMD3j γ(0,2):=lim_{n→+∞}(1/2+1/4+…+1/(2n)-log(2n)/2) γ(1,2):=lim_{n→+∞}(1+1/3+…+1/(2n+1)-log(2n+1)/2) とおくと、γ(0,2)とγ(1,2)のうち、少なくとも一つは無理数(超越数)である。 なぜか? γ(0,2)-γ(1,2)=log(2) が無理数(超越数)だから γ(0,2)とγ(1,2)の両方が有理数(代数的数)であることはありえない。 ちなみに、γ(0,2)+γ(1,2)=γである。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/258
282: 132人目の素数さん [sage] 2025/02/06(木) 16:05:04.15 ID:jBYaMD3j 従って、逆離散フーリエ変換から γ(0,3)=1/3(γ-log(1-ω)-log(1-ω^2)) γ(1,3)=1/3(γ-ω^2log(1-ω)-ωlog(1-ω^2)) γ(2,3)=1/3(γ-ωlog(1-ω)-ω^2log(1-ω^2)) が得られる。ベーカーの定理の系1より https://ja.wikipedia.org/wiki/%E3%83%99%E3%82%A4%E3%82%AB%E3%83%BC%E3%81%AE%E5%AE%9A%E7%90%86 -log(1-ω)-log(1-ω^2), -ω^2log(1-ω)-ωlog(1-ω^2), -ωlog(1-ω)-ω^2log(1-ω^2) はいずれも超越数であることが分かるので γ(0,3), γ(1,3),γ(2,3)の中で、代数的数は高々1個しかない (少なくとも2個は超越数である)ことが言える。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/282
283: 132人目の素数さん [sage] 2025/02/06(木) 16:06:38.80 ID:jBYaMD3j 以上の議論において、真に強力なのはベーカーの定理である。 その証明には精密な数論的議論を要する。 未解決問題であるγについての知見を得ることは そのさらに向こう側にある事象であると言える。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/283
291: 132人目の素数さん [sage] 2025/02/06(木) 17:31:15.79 ID:YqLfsVRy >>290 私は代数ではなくどちらかというと解析の方に興味がある 概して、解析でする議論は解析数論の議論より遥かに複雑で、 解析の議論をすることは解析数論の議論をするときに役立つ http://rio2016.5ch.net/test/read.cgi/math/1738367013/291
298: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/06(木) 18:10:24.37 ID:kjKecCBk >>277 >>205の回答まだですか? うん? >>205 (引用開始) 好きな順番で整列できるなら、実数全体の集合上の整列順序をあなたの好きなように作って示して下さい。 できるできる詐欺でないなら。 (引用終り) これか? 1)いま、簡単に実数Rのプラス側のみを考える 半開区間を、[0,1), [1,2), [2,3), ・・、[n,n+1),[n+1,n+2),・・・ を設ける。[n,n+1)内を、整列可能定理で整列させる そして 区間 [0,1), [1,2), [2,3), ・・、[n,n+1),[n+1,n+2),・・・ を無限シャッフルし、並び替える 例えば [3,4), [2,3), [5,6),・・・など もし、各区間の実数並びが 他の区間と同じ(類似?)であっても その順列組み合わせは lim n→∞ n! 通りになる 2)いま、0<ε<1 なる実数を取る。有理数とは限らないとする 上記同様に [0,ε), [ε,2ε), [2ε,3ε), ・・、[nε,(n+1(ε),[(n+1)ε,(n+2)ε),・・・ のように、区間分割できる 1)と同様にシャッフルする。εによる区間分割の集合は可算濃度だが、ε自身は連続濃度 3)また、各区間の実数の整列は、整列可能定理で整列させるが その先頭部分は、各人が好きにしてよい 例えば、[2,3)で 先頭をe (対数の底)にするとか 例えば、[3,4)で 先頭をπ(円周率)にするとか <まとめ> ・公理なので、その公理や 他の数学の命題に抵触しない限り 人の意思が入っていいのです! (そうでなければ、人が自由に数学を展開できないでしょ? そんなの常識だろ?) ・ただ、今の人類の数学で、人の意思と知恵が、実数を 任意に整列できるレベルに達していないならば その部分については、整列可能定理の整列の存在だけで我慢するしかない!■ そういうことでしょ? (^^ http://rio2016.5ch.net/test/read.cgi/math/1738367013/298
305: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/06(木) 20:29:26.67 ID:6JYRwlF9 <公開処刑 続く> (『 ZF上で実数は どこまで定義可能なのか?』に向けて と (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”] >>302-303 (引用開始) >各区間の実数の整列は、整列可能定理で整列させる え??? 整列定理使うの? じゃ好きな順番で整列できないじゃん あなたは馬鹿なんですか? >各区間の・・・その先頭部分は、各人が好きにしてよい じゃ好きにしてみて 口でよいと言うんじゃなく実際にやってみてよ ちなみに区間は無限個あるので先頭も無限個だけど好きにできるのね? もしそうなら区間を考える意味とは? Rから直接好きな順に選べばいいじゃん (引用終り) ふっふ、ほっほ おサルさんたち>>7-10 そもそも、「数学の公理とは?」が理解できていない! 数学の公理とは?:人(=人類)が、数学の理論を展開するためのルールです。 数学の公理がなぜ必要?:カントールの展開した素朴(ナイーブ)な集合論は、矛盾にぶち当たった。矛盾にぶち当たるのを回避するためには、簡素なルール(即ち公理)が必要だってこと 良い公理とは?:良い公理とは、簡潔であること。その中で分かり易いこと。いままでの数学理論(ZFCの誕生当時なら20世紀初頭の数学理論、いま2025年なら今の数学理論)が、自由自在に展開できることだね 数学の公理は変えて良いか?:当然変えて良い。ZFC公理系以外にも、提案されている公理系が沢山ある。また、公理を追加してよい。ZFCGとか。但し、ZFC公理系が基礎論屋さんに重宝されるのは、強制法との相性が良いということがあるらしい by 渕野先生の受売り ja.wikipedia.org/wiki/%E5%BC%B7%E5%88%B6%E6%B3%95 (引用開始) つーか好きな順番に整列できるなら、通常の大小関係の小さい順に並べればいいじゃん。 しかしこれは整列順序ではない。実際部分集合(0,1]には通常の大小関係の最小値は存在しない。仮に最小値mが存在するとすると0<m/2<mで矛盾なので。 反例が存在するからあなたの持論「好きな順番に整列できる」が間違いであることが証明されますた。残念! (引用終り) ふっふ、ほっほ おサルさん、全然反論になってないんですが・・・www ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/305
322: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/07(金) 07:47:16.21 ID:G94wYDfA >>313-320 >そういうことを問題にする理由がわからない ID:QK9K1Eig は、御大か 朝の巡回ご苦労さまです 思いますに 彼は、小学校で遠山先生の数学入門 (多分上下とも。下記 試し読みあり) を読んで、微積まで分ったと、舞い上がって で、おそらく東大を目指したと思うのですが 私大のW大数学科へ入った そこで、遠山先生の数学入門と全く違う 大学数学科の冷や水を 浴びせられた 結局、学部1〜2年で、詰んでしまった その憂さ晴らしをしたいというのが、本当のところでしょうね ルサンチマンでもある >「Invertible matrix は、逆行列を持つ」 語感から言えば、同義反復だが 分かり易い ;p) 「落馬とは、馬から落ちること」 「馬から落ちることを、落馬という」 みたいなね。”Reguläre Matrix”とした 当時の数学者の考えは分ります が、線形代数が大衆化して、かつ、抽象化していった結果 「落馬とは、馬から落ちること」と教えた方が、手っ取り早いってことでしょうね 米仏の考えはw ;p) (参考) https://www.iwanami.co.jp/book/b267429.html 数学入門 (上) 試し読み http://www.iwanami.co.jp/moreinfo/tachiyomi/4160040.pdf 著者 遠山 啓 著 通し番号 青版 G-4 ジャンル 書籍 > 岩波新書 > 自然科学 日本十進分類 > 自然科学 > 数学 刊行日 1959/11/17 http://rio2016.5ch.net/test/read.cgi/math/1738367013/322
337: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/07(金) 15:47:44.72 ID:2sO/8ukw >>335-336 話は逆だろ? あほサル>>7-10のヤクザ因縁だろ?w ;p) 例えばテンプレ>>10がその典型で 列 {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・で Thomas Jechの 証明 >>47のように 順序数の付番をして 順序数との対と考えて ({},0)<({{}},1)<({{{}}},2)<({{{{}}}},3)<・・・ この順序は、順序数でつけられた順序 0 < 1 < 2 < 3 < ・・・ であると考える (>>47のThomas Jechの 証明の通りです ) だから、({},0) < ({{{}}},2) で、順序は 0 < 2 により従うとして問題なし! (^^ ところが、あほサルのヤクザは 『{{}}∈{{{}}} は真だが、{}∈{{{}}} は偽』>>9 などと、てめえの低能の脳内妄想全開の ヤクザ因縁w ;p) 完全にアホの”パープリン”(下記) 笑えます (^^ (参考) https://ja.wikipedia.org/wiki/%E6%9D%B1%E5%A4%A7%E4%B8%80%E7%9B%B4%E7%B7%9A 東大一直線 パープリン 「パーなのでまるで脳がプリン」を意味する。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/337
347: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/07(金) 17:34:56.44 ID:2sO/8ukw >>339 補足 >選択公理の選択関数は、”少なくとも1つ(以上)”で なんら問題なし >選択関数が、100あろうが、1000あろうが・・、可算無限あろうが、非可算無限あろうが、問題なし! w ;p) そして、もう一つ大事なことが 下記 ”数学での抽象化と具体化の行き来” ”JAXAで欠かせない数学は、具象と抽象のあいだを行き来する学問” 抽象的な選択関数を使って 具体的な対象を構成する 数学科1〜2年でオチコボレさんで、そういうことが出来ない人がいる そういうことが出来ないから、オチコボレなのか? (参考) https://maruno-jyuku.com/2018/11/17/%E6%95%B0%E5%AD%A6%E3%81%A7%E3%81%AE%E6%8A%BD%E8%B1%A1%E5%8C%96%E3%81%A8%E5%85%B7%E4%BD%93%E5%8C%96%E3%81%AE%E8%A1%8C%E3%81%8D%E6%9D%A5%E3%80%82/ マルの塾 数学での抽象化と具体化の行き来 2018年11月17日 数学は抽象的な科目だと言われますが,それを意識したことはあるでしょうか? そもそも抽象的とはどういう事でしょう。辞書を引いてみると 「いくつかの事物・表象から共通する性質を引き出し,それを一般化して思考するさま」(明鏡国語辞典より) とあります。 共通する性質を引き出す?一般化??思考するさま??? ふう。読むだけで疲れる。そうですよね。 では,あれこれ考える前に, 具体的(?)に数学の抽象化の例を挙げてみます。びっくりするほど,あっさりしています。 数学では,偶数(2で割って割り切れる数)をnを自然数として,2nと表します。 これが抽象化です。「え?」と思った人もいるのでは? たった2nと書いただけ。これがあの「いくつかの事物・・・思考するさま」なのでしょうか。 そうです。これでいいのです。(ちなみに2nは「2かけるn」のことです。) 抽象化を進めれば進めるほど,表現は単純になります。 次は具体化です。抽象化したものは,実際に利用するときは具体化して考えます。 先ほど思い浮かんだ2とか10とか36は,具体化した偶数です。 では,抽象化(偶数2n)→具体化(2とか10とか36)の手続きは? 2nという表現において,nは自然数(ものを数えるときの数)なのだから,nを1にしてみます。 nという抽象的な数を具体的な数1に書きかえることを,nに1を代入するといいます。 すると,2×1=2 具体的な数2が出てきました。 https://forbesjapan.com/articles/detail/41323/page3 2021.05.27 forbesjapan JAXAで欠かせない数学は、具象と抽象のあいだを行き来する学問 JAXA's(JAXAの機関紙) | Official Columnist https://forbesjapan.com/articles/detail/41323/page4 相曽 例えば、手前に羊が3匹、遠くに羊が2匹いて、合わせたら羊は5匹。これは数学で表すと「3+2=5」になりますよね。 ──はい。その計算はできます(笑)。 相曽 この、「3+2=5」になるという性質があるんだとわかった時点で、本質的には物事を抽象化しているんですよ。 つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/347
348: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/07(金) 17:35:26.31 ID:2sO/8ukw つづき ──なるほど。「計算した」という事実にばかりピントを合わせてきましたが、そうやって考えていくと私たちは日々、知らず知らずのうちに数学を使って、物事を抽象化していたわけですね。 青山 そういうことです。そして抽象と具象のあいだを行き来すること。それが普段、我々が使っている思考かもしれません。 相曽 計算という側面も大いに役立ちます。ですが、考え方の枠組みを抽象化、一般化することで全く別軸にあったふたつの問題を、例えば同じ数式で解いてしまえる。そういう可能性を提供しようとするところもまた、数学の役割だということを少し頭の片隅に置いていただけたらと。 ──言い換えるとそれは、最小限の仕組みや手順で幅広く複雑な現象を取り扱うことができるということですよね。うまく言えませんが、数学とはエレガントな学問だと思いました。苦手意識が薄れるような時間を(笑)、ありがとうございました (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1738367013/348
358: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/08(土) 10:47:01.45 ID:23ITt7NX >>352 >選択関数が無限個あったらダメ >と、誰ひとりとして言ってないんだが、おサルさんは一体誰と戦ってるの? ふっふ、ほっほ >>204 より (引用開始) >なお、おサルさん>>7-10は >存在を示す 選択公理(選択関数)のポジティブな面を見ようとせず >ネガティブな面のみを強調するが、それ 自分の数学レベルの低さを自白しているに等しい 好きな順番で整列できるだの、aαでfを定義するだのほざいてる人こそ自分の数学レベルの低さを自白しているに等しい (引用終り) ここに戻ろう >>347より ”数学での抽象化と具体化の行き来” ”JAXAで欠かせない数学は、具象と抽象のあいだを行き来する学問” 『抽象的な選択関数を使って 具体的な対象を構成する』 好きなだけ、可能な範囲でね 2025年の数学の能力で不可能な場合は、別としてね 普通の数学徒は、それができないと、(超天才は別として) ”数学での抽象化と具体化の行き来”が出来ないと、オチコボレさんだわw ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/358
376: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/08(土) 13:02:49.91 ID:23ITt7NX >>358 戻る (引用開始) >なお、おサルさん>>7-10は >存在を示す 選択公理(選択関数)のポジティブな面を見ようとせず >ネガティブな面のみを強調するが、それ 自分の数学レベルの低さを自白しているに等しい 好きな順番で整列できるだの、aαでfを定義するだのほざいてる人こそ自分の数学レベルの低さを自白しているに等しい (引用終り) 『抽象的な選択関数を使って 具体的な対象を構成する』 好きなだけ、可能な範囲でね 2025年の人類の数学の能力で不可能な場合は、別としてね 具体例で論じよう 下記 ヴィタリ集合を取り上げる ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 構成と証明 有理数体 Q は実数体 R の普通の加法についての部分群を成す。なので加法の商群 R/Q (つまり、有理数分の差を持つ実数同士を集めた同値類による剰余群) は有理数集合の互いに交わらない"平行移動コピー"によって出来ている。この群の任意の元はある r ∈ R についての Q + r として書ける R/Q の元は R の分割の1ピースである。そのピースは不可算個あり、各ピースはそれぞれ R の中で稠密である。R/Q の元はどれも [0, 1] と交わっており、選択公理によって [0, 1] の部分集合で、R/Q の代表系になっているものが取れる このようにして作られた集合がヴィタリ集合と呼ばれているものである すなわち、ヴィタリ集合 V は [0, 1] の部分集合で、各 r ∈ R に対して v − r が有理数になるような一意的な v を要素に持つものであるヴィタリ集合 V は不可算であり、 u,v∈V,u≠v であれば v − u は必ず無理数である ヴィタリ集合は非可測である これを示すために V が可測だったとして矛盾を導く。q1, q2, ... を [−1, 1] の有理数の数え上げとする(有理数集合は可算なのでこれは可能)。V の構成から、平行移動による集合 Vk=V+qk={v+qk:v∈V}, k = 1, 2, ... はそれぞれ互いに交わらない さらに、 [0,1]⫅⨄kVk⫅[−1,2] である。ここで、ルベーグ測度のσ-加法性を使うと: 1≦?k=1∞λ(Vk)≦3. である。ルベーグ測度は平行移動について不変なので λ(Vk)=λ(V) である ゆえに、 1≦?k=1∞λ(V)≦3. であるが、これは不可能である 一つの定数の無限和は 0 であるか無限大に発散するので、いずれにせよ [1, 3] の中には入らない すなわち V は可測ではない。つまりルベーグ測度 λ はいかなる値も λ(V) の値として定義できない[3][4] (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/376
387: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/08(土) 23:30:23.67 ID:23ITt7NX <公開処刑 続く> (『 ZF上で実数は どこまで定義可能なのか?』に向けて と (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”) >>376 つづき さて、上記の ヴィタリ集合 加法の商群 R/Q (つまり、有理数分の差を持つ実数同士を集めた同値類による剰余群) で、Q→U ( 10進の有限小数環(有限小数の"U"ね)) を考える Uが、環を成すことは u1,u2 ∈U で、u1,u2 の和と積が 集合Uに属することから明らか 当然Uは、U⊂Q で可算。Qは無限小数の循環小数を含むが、Uはあくまで有限小数のみ よって、Q/Uは Qの無限小数の循環パターンを分類する(なお、無理数が循環少数パターンにならないことは、自明) R/Uは、当然非可算濃度で、R/Qより多少細かい分類になる 超越数が非可算で 代数的数が可算であることから、 R/Uの代表は、一般的には、 ある超越数τ と 有限小数u ∈U との組合せで τ+u の 形に 書ける あとは、後日 請うご期待 (^^ (参考) www.ma.huji.ac.il/hart/ Sergiu Hart www.ma.huji.ac.il/hart/#puzzle Some nice puzzles: www.ma.huji.ac.il/hart/puzzle/choice.pdf Choice Games November 4, 2013 P2 game2: ・Player 1 chooses a rational number in the interval [0,1] and writes down its infinite decimal expansion3 0.x1x2...xn..., with all xn ∈ {0,1,...,9}. Remark. When the number of boxes is finite Player 1 can guarantee a win with probability 1 in game1, and with probability 9/10 in game2, by choosing the xi independently and uniformly on [0, 1] and {0, 1,..., 9}, respectively. http://rio2016.5ch.net/test/read.cgi/math/1738367013/387
404: 132人目の素数さん [] 2025/02/09(日) 09:14:38.29 ID:KVhWlXEd 数の歴史とは、ないなら作ってしまえ、という歴史の積み重ね 足しても元と同じになる数がないなら作ってしまえ(0) 1を2で割った数がないなら作ってしまえ(1/2) 1足して0になる数がないなら作ってしまえ(−1) 二乗して2になる数がないなら作ってしまえ(√2) 二乗してー1になる数がないなら作ってしまえ(i) 極限が存在しないなら作ってしまえ(π、e) 上記6つのうち5つは代数的な拡大だが、 最後はそうではなく位相的な拡大であることに注意 http://rio2016.5ch.net/test/read.cgi/math/1738367013/404
407: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/09(日) 09:41:53.89 ID:lz6oAIdr 努力家のおっちゃんと比較されて 光栄です!! http://rio2016.5ch.net/test/read.cgi/math/1738367013/407
411: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/09(日) 10:39:13.03 ID:lz6oAIdr >>404 >数の歴史とは、ないなら作ってしまえ、という歴史の積み重ね ふっふ、ほっほ おサル、いま良いことを一つ言ったね ;p) >>10より ・自然数 ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0 『形式的な定義 自然数の公理 以上の構成(注 ノイマン構成)は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。 例えば、0 := {}, suc(a) := {a} と定義したならば、 0 := {} 1 := {0} = {{}} 2 := {1} = {{{}}} 3 := {2} = {{{{}}}} と非常に単純な自然数になる』 この方式では、 n → ∞(=ω)で、 ω := {・・{{{}}}・・}_ω (つまり カッコ{}の無限多重)が実現できない しかし だから、lim n → ω ω := {・・{{{}}}・・}_ω と定義してしまえ! は、ありだよ これは、下記 一点コンパクト化の例でもある (参考) https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%B3%E3%83%91%E3%82%AF%E3%83%88%E5%8C%96 コンパクト化 アレクサンドロフの一点コンパクト化 普遍性 コンパクトではない空間の一点コンパクト化 X∗がハウスドルフ空間であれば以下の性質(普遍性)を満たす事が知られている: アレクサンドロフの一点コンパクト化の普遍性 略す 一点コンパクト化の例 自然数全体(離散位相) N の一点コンパクト化は N に最大元 ω を付け加えた順序集合 N∪{ω} の順序位相と同相になる。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/411
434: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/09(日) 20:08:08.05 ID:lz6oAIdr >>427 (引用開始) {・・{{{}}}・・}_ωが集合であると仮定すると、その元は一番外側の括弧を外したもの。 しかしωは後続順序数ではないのでその前者は存在しない。よって一番外側の括弧を外すことができない。 集合なのに一番外側の括弧を外すことができないのは矛盾だから、集合であるとした仮定が誤り。 つまり >しかし だから、lim n → ω ω := {・・{{{}}}・・}_ω と定義してしまえ! は、ある不明なものを別の不明なもので定義しただけであり、結局何の定義にもなっていない。 (引用終り) 良いんじゃね? それで ・ZFC で、ゲーデルの不完全性定理の示すところ、ZFCで否定も肯定もできない命題が存在するよね だから、”lim n → ω ω := {・・{{{}}}・・}_ω と定義してしまえ!”はあり(ZFCの外の存在としてでも) ・そもそもが、無限公理についても デデキントは ”無限集合の存在”が 証明できると考えていたのです(下記 渕野) ・しかし、”無限集合の存在”は、他の公理から証明することができないとなって ”無限集合の存在”の公理を置いた(いわゆる無限公理) ・「無限とはなんぞや?」 だが、”無限”を言葉で書くとまずい 言葉で書くと、その書いたことばをまた定義しなければならない・・と 無限に後退してしまう だから、”無限集合”を公理としておいた ・だったら、それに準じて 必要ならば ”lim n → ω ω := {・・{{{}}}・・}_ω と定義してしまえ!”は、ありだろ? それが、従来の集合と異なる? それがどうした? 無限公理の示す 無限集合は それ以前の有限集合と異なる性質を持つよw ;p) (参考) https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1739-16.pdf 数理解析研究所講究録 2011年 Dedekindの数学の基礎付けと集合論の公理化 渕野昌 神戸大学 P173 3 無限の存在証明 晩年のDedekind が,無限の存在証明 ([3] の66.)の残ったままのテキストをこの再版に回してしまったことの背景だったのではないだろうか. ただし,Dedekindの名誉のために付け加えておくと,1911年の時点では,無限の存在が集合論の他の公理から独立であることは,当時の若い集合論の研究者たちすら,まだ完全には把握しきれていなかった可能性がある.たとえば,Zermelo文[18]の公理系とよばれることになる体系の原形はで発表されているが,その初めで,Zermelo Zermeloは, 略す と書いているし,Zermelo [18],下線の公理の命題の間の独立性についての,より踏み込んだ議論は,Fraenkelらである.無限公理の1922年の論文[7]までなされていないように思えるか(無限集合の存在を主張する公理)性はの集合論の他の公理からの独立(集合論のすべての公理を含む体系の中で), Hω (hereditarily f initeな集合の全体)と,この上に$\in$関係を制限したものの組からなる構造を作ると,そこでは,無限公理以外の集合論のすべてが成り立つことが確かめられ,そのことから「集合論の公理系が無矛盾なら,集合論の公理系から無限公理を除いた体系から無限公理は導かれない」ことが導かれるとして示すことができる.もちろん,[集合論の公理系が無矛盾なら」は,不完全性定理以降の時代に生きる我々の後知恵であるが(9), 略す (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1738367013/434
442: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/09(日) 21:50:16.63 ID:lz6oAIdr >>435-441 ふっふ、ほっほ 1)無限公理で導かれる 無限集合の全自然数の集合 N:={0,1,2,・・,n,n+1,・・} で? これ(無限集合 N)に、前者は存在しないよ で? これ カッコ{} 外して良いの? 0,1,2,・・,n,n+1,・・ ですよね ここの”・・ ”は、許される? 2)だったら、”lim n → ω ω := {・・{{{}}}・・}_ω と定義してしまえ!”で ω := {・・{{{}}}・・}_ω にも、前者は存在しない! ”・・ ”が、許されるならば ・・{{{}}}・・ も良いんじゃね? 片側の”・・ ”が許されて、両側だめ? なんで? だから、おっさんの言っている 難癖はさ 全部、N:={0,1,2,・・,n,n+1,・・} にも、 当てはまっているんじゃない?w ;p) 正則性公理を否定する? {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・ と書けるよね? (>>10の通り) いやさ、そう定義すれば良いだけのことだよw ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/442
457: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/09(日) 22:58:34.94 ID:lz6oAIdr >>443-445 >むずかしい ご苦労さまです ID:bOyjY4Ig は、御大か 巡回ありがとうございます {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・ ∈{・・{{{}}}・・}_ω ここで、カッコ{}の多重度を導入しよう {}は、カッコの多重度0 {{}}は、カッコの多重度1 {{{}}}は、カッコの多重度2 {{{{}}}}は、カッコの多重度3 ・ ・ ・ {・・{{{}}}・・}_ωは、カッコ{}の多重度ω となる。それだけのことよ N={0,1,2,・・,n,n+1,・・}で 一番外側の括弧を外した0,1,2,・・,n,n+1,・・ は、任意有限の自然数の元が並んでいる状態だね {・・{{{}}}・・}_ωで 一番外側の括弧を外した ・・{{{}}}・・ は、任意有限のカッコ{}の自然数多重度を表す そう解釈すれば 良いんじゃね?w 簡単な話だよww ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/457
487: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/10(月) 07:56:45.59 ID:fq1QO0q/ >>461-464 ふっふ、ほっほ >{・・{{{}}}・・}_ωは集合? 集合の場合濃度は? ・{・・{{{}}}・・}_ωの濃度は1と定義する 有限の単元集合たちのω親分として定義する アレクサンドロフの一点コンパクト化として正当化できる ja.wikipedia.org/wiki/%E3%82%B3%E3%83%B3%E3%83%91%E3%82%AF%E3%83%88%E5%8C%96 ・{・・{{{}}}・・}_ω が、ZFC内に収るかどうかは知らない ZFC外であったとしても、集合と定義すれば良い ”数の歴史とは、ないなら作ってしまえ、という歴史の積み重ね”>>404 これは、良いことを一つ言ったな。ないなら、集合を一つ作ってしまえ! だね >>{}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・ ∈{・・{{{}}}・・}_ω >”∈{・・{{{}}}・・}_ω”の左隣は何? ・{・・{{{}}}・・}_ω には、左隣=前者 は、存在しない あたかも、ノイマン構成のω=N={0,1,2,・・,n,n+1,・・} に、前者が存在しないのと同じだよw ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/487
535: 132人目の素数さん [] 2025/02/10(月) 09:54:28.49 ID:6fwmQoR3 >>533 証明の要点を掴めてないからパラフレーズできない そういうやつは学問はもちろん会社勤めも無理 社奴といえども賢いやつはちゃんとそういうことにも対処し出世する http://rio2016.5ch.net/test/read.cgi/math/1738367013/535
609: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/10(月) 20:14:10.08 ID:fq1QO0q/ >>551-553 おっちゃん、ご苦労さまです 下記 e (mathematical constant) 、皆さんの参考に貼ります ;p) (参考) ja.wikipedia.org/wiki/%E3%83%8D%E3%82%A4%E3%83%94%E3%82%A2%E6%95%B0 ネイピア数(ネイピアすう、英: Napier's constant)は、数学定数の一つであり、自然対数の底である。ネーピア数、ネピア数とも表記する。記号として通常は e が用いられる。 en.wikipedia.org/wiki/E_(mathematical_constant) e (mathematical constant) Properties Number theory The real number e is irrational. Euler proved this by showing that its simple continued fraction expansion does not terminate.[38] (See also Fourier's proof that e is irrational.) Furthermore, by the Lindemann–Weierstrass theorem, e is transcendental, meaning that it is not a solution of any non-zero polynomial equation with rational coefficients. It was the first number to be proved transcendental without having been specifically constructed for this purpose (compare with Liouville number); the proof was given by Charles Hermite in 1873.[39] The number e is one of only a few transcendental numbers for which the exact irrationality exponent is known (given by μ(e)=2.[40] An unsolved problem thus far is the question of whether or not the numbers e and π are algebraically independent. This would be resolved by Schanuel's conjecture – a currently unproven generalization of the Lindemann–Weierstrass theorem.[41][42] It is conjectured that e is normal, meaning that when e is expressed in any base the possible digits in that base are uniformly distributed (occur with equal probability in any sequence of given length).[43] In algebraic geometry, a period is a number that can be expressed as an integral of an algebraic function over an algebraic domain. The constant π is a period, but it is conjectured that e is not.[44] (google訳) 実数 e は無理数です。オイラーは、単純な連分数展開が終了しないことを示してこれを証明した。[38] (e が無理数であるというフーリエの証明も参照してください。) さらに、リンデマン・ワイエルシュトラスの定理によれば、e は超越数であり、有理係数を持つ非ゼロ多項式方程式の解ではないことを意味します。これは、特にこの目的のために構築されることなく超越数であることが証明された最初の数でした(リウヴィル数と比較してください)。この証明は1873年にシャルル・エルミートによってなされた。[39] eは、正確な無理数指数が知られている数少ない超越数のうちの1つです( μ(e)=2.[40] つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/609
615: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/11(火) 00:17:27.13 ID:zr+dFWV7 >>612-613 補足 >武部 尚志 >という訳で、作った資料を←こちらの「資料公開」の項に置いてみました。年表は xfig で作って pdf を吐かせた物。Bernoulli, Legendre, Jacobi, Gauss の全集はネット上のあっちこっちの公開図書館から pdf を落として、紹介に必要な部分だけ切り貼りしました。どう考えても著者の著作権は切れているものばかりですが(一番新しいのが Gauss 全集か Jacobi 全集) これ分りました 日本語 or English のスイッチが 右上にあり、日本語に切り替えると ”資料公開”が出て、その中で https://researchmap.jp/multidatabases/multidatabase_contents/detail/229654/ee13e364a17be72679f15d64b4a78c33?frame_id=560986 タイトル Gauss 全集より lemniscate 積分関係の抜粋 カテゴリ 講義資料 概要 Gauss 全集より lemniscate 積分関係の抜粋(主に河田敬義「ガウスの楕円関数論」上智大学数学講究録 24 を参考にして関係箇所を一部だけ抜き出した)。 ダウンロード gauss-extract.pdf https://researchmap.jp/multidatabases/multidatabase_contents/download/229654/ee13e364a17be72679f15d64b4a78c33/3786?col_no=2&frame_id=560986 があって で、PDFがダウンロードできる。すると、このPDFの最後が P477 で、>>612の David A. Cox Gauss and the Arithmetic-Geometric Mean P20/22 の領域図で、 InVolumeIII, published in 1863 and edited by Ernst Schering: つまり、この古い版ですね P20/22 の下の領域図が、 In VolumeVIII, published in 1900 and edited by Felix Klein: で、>>613 九州大学数理学研究院 金子 昌信 氏 ”・・・Fricke が編者に入った 1900 年刊行のVIII巻(105ページ)においてようやく正しく書き直された.” に該当でしょう で、私は 初見では Coxの二つの図の違いが分らなかったが 左端の縦軸から 丸く突き出している部分が、上の 1863年版は不正確で 下の 1900 年版が正解ってことですね なるほどね いまごろ分ったです (^^; http://rio2016.5ch.net/test/read.cgi/math/1738367013/615
667: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/11(火) 15:52:40.15 ID:zr+dFWV7 >>658-660 >なんなら、ブルバキ数学原論の・・ ハッキリ宣告しておくが、ブルバキ数学原論 は、全くお薦めじゃ無い! 下記の斎藤 毅氏 『EGA そのはじめのところをみると、数学の対象とは構造のついた集合であるという、ブルバキの数学観が、時代遅れになっていることがわかる』 とあるでしょ?w ;p) さらに、”taro-nishinoの日記 ピエール・ドリーニュへのインタビュー” にあるように、彼は 14才で ”ブルバキの集合論を与えたが、それは一少年に与える当然の選択でない。その時、私は14歳だった。その本を消化するのに少なくとも一年かかった”とある まあ、それも彼は乗り越えて、しかし 高校時代にJacques Tits(アーベル賞受賞者)の講義を 聴講した。ドリーニュが、校外旅行で欠席したとき Jacques Titsは講義を延期した(ドリーニュへの配慮) 例外として、ブルバキ数学原論が好きな人がいることは認める むかし、旧ガロアスレで、コテの”猫”さんと話をしたとき、彼は抽象的なテキストが好きで、図とか具体的な話は要らない みたいな意見だった しかし、斎藤 毅『抽象数学では、記号はただの記号であることがだいじだが、ただの記号と思ってはいけないなどという話をする。矛盾しているようだが、いいたいのはこんなことである。ただの記号であるとは、どんなものでもあてはめてよいということである。そう思ってはいけないというのは、記号にあてはめられるものには、実に多様なものがあり、それらについての実体感抜きでは、本当の理解にはならないというつもりである』と 普通は、こっちでしょ?w ;p) (参考) https://www.ms.u-tokyo.ac.jp/~t-saito/jd.html 斎藤 毅 https://www.ms.u-tokyo.ac.jp/~t-saito/jd/gr.pdf グロタンディーク 数学セミナー2010年5月号 グロタンディークほど、多くの伝説が語られた20 世紀の数学者はいないだろう。しかしここで書きたいのは、私にとってのグロタンディークである。それは、今では遠い学生のころ、来る日も来る日も読みふけった、Tohoku、EGA、SGAの著者である。 グロタンディークがこれらを書いたのは、1950年代末から60年代末にかけての10数年という、仕事の膨大さに比べれば、かなり短い時間である。グロタンディークは、1928年3月28日生まれなので、20 代後半から30代にかけての業績である EGA そのはじめのところをみると、数学の対象とは構造のついた集合であるという、ブルバキの数学観が、時代遅れになっていることがわかる。グロタンディークにとっては、数学の対象とは、表現可能な関手を表現する圏の対象である。 たとえば、ブルバキ流にいえば、実数体とは、実数全体の集合に、加法と乗法という代数的な演算を与え、さらに位相をいれたものである。EGA では、スキームXとYのS上のファイバー積とは、S上のスキームの圏の対象で、Xが表現する関手とYが表現する関手の積関手を表現するもの、というのが定義である。 数学の対象は、それが何からなりたっているかではなく、どういう役割を果たしているかが重要だ、という視点の転換がそこにある SGA7 SGA の最終年(1967/69)となったものである。2冊目は、ドリーニュによるヴェイユ予想の解決の道具となった、消失輪体やレフシェッツ束の解析であるが、そこにはもうグロタンディークの姿はない つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/667
680: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/11(火) 17:15:43.39 ID:zr+dFWV7 >>675 (引用開始) > ハッキリ宣告しておくが、 > ブルバキ数学原論 は、全くお薦めじゃ無い! 日本のぬるっちい教科書も読めなかった君にはね > 斎藤 毅氏 >『EGA そのはじめのところをみると、 > 数学の対象とは構造のついた集合である > という、ブルバキの数学観が、 > 時代遅れになっていることがわかる』 (引用終り) ふっふ、ほっほ 1)ZFCを、コンピュータプログラミング言語と、思いなよ まあ、C言語とかね 2)で、C言語はスタンダードかも知れないが 他にも沢山プログラミング言語はある C言語のあとに出ててきた言語 3)さらに言えば、C言語はあくまで プログラミング言語だろ? 何が言いたいか? つまり、何かの課題があって、 それを C言語とかのプログラミング言語に落とすとき 人は、自然言語で考える 4)「何かの課題」とは、目の前の現実であって それを 一旦 自分なりの言語化をするだろ? 自然言語でね。無意識でやっていることも多いだろう 5)その後で、自然言語とか自分の内心で消化したものを、Cとかプログラミング言語に落とす その前に、フローチャートとか 全体の設計があるだろう なので、1950年とか1960年のZFCベースのブルバキ数学原論は、時代が古すぎだと思うよ 結局、ZFCベースは 不完全性定理が出て、その後強制法とかが発展して、多くの数学者は 「だったら、別に、ZFCベースでなくても良いんじゃね?」と、2025年の今 そう思っている人 多いと思う 1950年とか1960年とか、2025年から見れば、半世紀前だよw ;p) 別に、ブルバキ読みたい人は呼んだら良い。だけど、新しい本を併読すべきだよ ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/680
686: 132人目の素数さん [] 2025/02/11(火) 17:46:17.53 ID:xoFIjB4w 4の5の言わずに ハーディー・ライトの第1章だけでも読んでみたら? http://rio2016.5ch.net/test/read.cgi/math/1738367013/686
724: 132人目の素数さん [] 2025/02/11(火) 19:50:09.01 ID:MW1+hP7T https://manabitimes.jp/math/2697 ご苦労様という感じ ワクワク感はゼロ http://rio2016.5ch.net/test/read.cgi/math/1738367013/724
734: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/11(火) 23:09:47.96 ID:zr+dFWV7 >>699 >箱入り無数目のロジックに穴がないことも >納得した。 おお恐れながら 箱入り無数目のロジックに穴がないとしても rio2016.5ch.net/test/read.cgi/math/1736907570/ 1列の場合に矛盾ありです つまり 1列の出題 s = (s1,s2,s3 ,・・,sn-1,sn,sn+1,・・) ∈R^N を考える いま しっぽ同値類の代表 s' = (s'1,s'2,s'3 ,・・,s'n-1,sn,sn+1,・・) ∈R^N であったとして この場合、sn-1≠s'n-1 として、n以降は一致していて 決定番号d=n です いま、回答者のAさんが、ある大きな有限の数 D をとって d < D と出来れば , D 以降の箱 sD,sD+1,sD+2,・・の箱を開けて 出題のしっぽから 同値類を特定して、その代表列 s' = (s'1,s'2,s'3 ,・・,s'n-1,sn,sn+1,・・) があって sD-1の未開の箱の数は、定義より d ≦ D-1 が成り立っているので 代表のD-1の数が、未開の箱の数 sD-1 と一定している と宣言すれば、Aさんは勝てる そして、もし 常に ある大きな数 D をとって d < D と出来るならば、回答者のAさんは、100%必勝です だが、これは変です その解明として、数列を形式的冪級数τ(X)と考えるて τ(x) = s1+s2x+s3x^2・・+sn-1x^n-2+snx^n-1+sn+1x^n+・・ として 上記同様に考えると、代表 τ'(x) = s'1+s'2x+s'3x^2・・+s'n-1x^n-2+snx^n-1+sn+1x^n+・・ として 差を取ると 決定番号d=n より上の係数は消えて τ(x) -τ'(x) =s1-s'1+(s2-s'2)x+(s3-s'3)x^2・・+(sn-1-s'n-1)x^n-2 :=f(x) (多項式) と 係数 (sn-1-s'n-1) より小さい部分が残り n-2次多項式に なる しっぽ同値類とは、形式的冪級数環R[[x]]/R[x] (R[x]は多項式環) という商集合で しっぽ同値類の代表とは、f(x)∈R[x]、τ(x) =τ'(x)+f(x) ∈R[[x]] です 多項式環R[x]は、任意の自然数より大きい次元の部分空間を持つ無限次元線形空間 (>>419 都築より) ですから、いま あえて未定義の ランダム*)という言葉を使うと ランダムに選ぶ R[x]の元は(前記の意味で)無限次ですので ”回答者のAさんが、ある大きな有限の数 D をとって d < D と出来る”が不成立です(τ(x) が わかって意図すれば可能です) ( *)”ランダム”を、選択公理に お任せ と考えても良いでしょう) 追伸 いま 100列で考えて、99列から ある大きな有限の数 D を決める 1列が未開で残る。そうすると、上記と同じ状態になります 箱入り無数目は、未開の1列と 開けてしまった99列が平等だと仮定している そう仮定すれば、ロジックに穴がないかも知れないが 未開の1列と 開けてしまった99列とが 平等に扱えないならば、上記の通りです http://rio2016.5ch.net/test/read.cgi/math/1738367013/734
764: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/12(水) 10:44:42.29 ID:rAcOLHcf >>734 補足 ・1列の出題の考察から分かること i)全事象 Ω=多項式環R(x) で、Ωが発散している。つまり、大きすぎる。 だからP(Ω)=1のコルモゴロフの確率公理を満たせない ii)Ωが発散して 大きすぎるので、大数の法則が成り立たない ・だから、箱入り無数目のロジックに穴がないとしても 99/100 が、未開の1列と 開けてしまった99列が平等だと仮定して導けたとしても 本来の確率論の外、つまり 99/100 は、疑似確率 あるいは 確率モドキ なのです <補足> i)全事象 Ωが、大きすぎ Ωが発散しているとき何が起きるか? 簡単なミニモデルとして、Ω=N(自然数)から、数を1つ選んで 大きい数の人が勝ちとする 場に、0,1,2,・・の無限の札が、裏向けに伏せておいた置いてある Aさんが、ある数a=100億 を選んで、Bさんに示したとする Bさんは、勝ったと思う。Nは無限集合で、平均値も無限大だから、100億超えの数は簡単に選べるはず 逆も真で、Bさんが先にb=100億 を提示すれば、Aさんが勝つだろう では、AさんとBさんと、同時に札を開示すればどうか? 確率1/2? ii)もし、札が有限で 0,1,2,・・,100 までとしよう そして、何度も繰り返す。そのとき、大数の法則で どちらが先に開示するか、あるいは同時開示か 大数の法則で 確率1/2に収束するはず だが、Ω=N(自然数)で 0,1,2,・・の無限の札 を使うと 大数の法則とは合わない。大数の法則が成り立たない Ω=多項式環R(x) の場合も、上記同様です 繰り返すが、P(Ω)=1のコルモゴロフの確率公理を満たせない 大数の法則が成り立たない つまり 99/100 は、疑似確率 あるいは 確率モドキ です! http://rio2016.5ch.net/test/read.cgi/math/1738367013/764
770: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/12(水) 11:09:56.47 ID:rAcOLHcf >>763 >そういう人は端的にいって数学に全く興味ないといっていい >だから数学科などにいかず工学部あたりで職業訓練受けて >ただの一般人になる プロ将棋の養成機関で、奨励会がある 一人のプロ棋士誕生のうらに、プロ棋士になれなかった多数の奨励会員がいる 囲碁では、院生という プロ棋士養成制度がある これも、年齢制限があって、一人のプロ棋士誕生のうらに、プロ棋士になれなかった多数の院生がいる だいたい、将棋でも囲碁でも、幼少期に覚えて 1年経たないうちに 近所の大人を追い越す。そして、道場などに入って、アマ有段者、高段者と対局して力をつける (いまどきは、上記に加えて ネット対局や AIとの対局及び研究が入るだろう) そういう人は、NHKの小学生名人戦などで、小学生名人になったりして だいたいは、プロにはなれるが、タイトルを取れるかどうかは、別問題 それは、プロ野球などと同じ 甲子園で、エースで投げても、プロ野球で一軍レギュラーでローテーション入りできるかは不明 これを数学に当てはめると、小学校で遠山先生の数学入門で 微積が理解できたというのは 才能ありと言えるだろうが、それでプロ数学者になれるかは別(プロ目指すやつって、そんなやつばかりw) それから、某私大の数学科の当時の教育法も いまいちだったんじゃね? ∀や∃とか、そっちに走ったんだね。1970年代、1980年代は そういう時代だったかも それは我々の時代でもある。「数学科なんか行っても、おれたち程度ではせいぜい高校教師」という時代(高校時代にそういう会話をした) いまは、数学科からIT系とかいろいろあるみたいだけど 一方、IT系とかだと、純粋数学だけでなく 応用力がないとダメじゃね? おサルさんは、応用力ゼロ?w ;p) (ああ、病気になって、いまヒキコモリか) 参考 https://coeteco.jp/articles/10736 コエテコ byGMO 編集部 更新日: 2025.02.05 データサイエンティストの年収はいくら?仕事内容も解説 日本のデータサイエンティストの平均年収は? 日本のデータサイエンティストの平均年収は、約700万円。月給に換算すると58万円、初任給は24万円程度が相場のようです。 ボリュームゾーンは、696〜804万円となっており、他の職種と比較してボリュームゾーンの価格帯も高くなっています。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/770
833: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/13(木) 10:35:38.47 ID:mxQOAQvq >>820 >逆行列を求めるより固有値を求めるほうがはるかに大変だ >ということくらいは覚えておいたほうがいい 視野が狭いな 行列の固有値の本質が分かってない! 下記を百回音読してねw ;p) (なお、ハイゼンベルグ行列力学は、無限次元) (参考) hiroyukikojima.ハテナブログ.com/entry/2023/05/05/185544 (URLが通らないので検索請う) hiroyukikojima’s blog 2023-05-05 万物は固有値である 略す この本のメッセージを一言で言えば、 万物は固有値である ということだと思う。 「固有値」が難攻不落の難問「リーマン予想」の攻略の武器となることをわかりやすく解説した本ということになる。 本書の根幹には、ヒルベルトとポリアの「ゼータ関数の零点は固有値解釈できるだろう」という予想がある。そのベンチマークとなる理論としての「Z-力学系のゼータ関数」から話をはじめている。 例えば、合同ゼータ関数のリーマン予想解決については、グロタンディークがエタール・コホモロジーを使って、フロベニウス作用素の行列表現の固有値で解釈した方法が概説される。またセルバーグゼータ関数では、「フーリエ展開」の係数が固有値と解釈できることから、フーリエ展開を応用した「ポワソンの和公式」がセルバーグ跡公式の源であることが詳しく説明され、そこからセルバーグゼータ関数のリーマン予想解決の急所に向かっていくのである。 ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E4%BA%88%E6%83%B3 リーマン予想 作用素理論 →詳細は「ヒルベルト・ポリア予想」を参照 ヒルベルトとポリヤはリーマン予想を導出する1つの方法は自己共役作用素を見つけることであると提案した。その存在から ζ(s) の零点の実部に関する例の主張が、実固有値に主張を適用すると従うのである。このアイデアのいくつかの根拠は、零点がある作用素の固有値に対応するリーマンゼータ関数のいくつかの類似から来る 略す Odlyzko (1987) は、リーマンゼータ関数の零点の分布はガウスのユニタリアンサンブル(英語版)から来るランダム行列の固有値といくつかの統計学的性質を共有していることを示した。これはヒルベルト–ポリヤ予想にいくらかの根拠を与える。 Zagier (1981) はラプラス作用素の下でリーマンゼータ関数の零点に対応する固有値をもつ上半平面上の不変関数の自然な空間を構成した。そして、この空間上の適切な正定値内積の存在を示すというありそうもないイベントにおいてリーマン予想が従うことを注意した。 つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/833
854: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/13(木) 14:23:20.54 ID:mxQOAQvq 戻るよ >>817 > 零因子は無駄に話を広げすぎ > 行列式ですら広げすぎなんだから 話は逆 あなたの視点は、低い・狭いw ;p) いまのカリキュラムの線形代数とは、いろんな分野のエッセンスを抽象化したもので 下記の 謎の数学者 氏のいうように、ある程度で 先に進めて また 線形代数を学んだ方が良いのです >>833の固有値の話も 同様です 固有値が 「求めるのが大変」とか、そういうレベルで考えていることが、すでに落ちコボレさんでしょ? ;p) 線形代数が関連する分野を学んで また、分からないところが出てくれば ちょっと線形代数に後戻りして、また学ぶ 但し、”先を急ぎたがる” by 謎の数学者 『数学科あるある。大学院時代に本を大量に買い込む』 は、注意点ですがね ;p) (参考) https://youtu.be/q-3IWEyfFQg?t=1 数学に向かない人の数学書の読み方。数学者はこうやって読む。 謎の数学者 2022/06/07 @nejimakitaro 2 年前(編集済み) 数学書以外でも、専門書を読むときに、少し考えて理解できない時には、その箇所に"?"と記載して、読み進めるようにしています。改めて読み直した時に、初めて読んだ時よりも知恵がついて解決することが多いですね。なぜ"?"にしたのか分からないぐらい自明なときもよくあります。時間をおくことで、理解を阻害する思考のトラップやバイアスが相対的に弱まるのかもしれません。 @gary8593 2 年前 「絵を描くように」という例えが、めちゃくちゃ腑に落ちました。 特に英語の文献を読む時に精読を心がけすぎて、全体像が掴めなくなることがよくあって困ってたので、参考にします。 文字起こし 3:19 この読む際にですねまあ先ほど言いました 3:22 ようにやってはいけない読み方というのは 3:25 これですねあの一語一句詠んでしまうと 3:29 いう人がですねいるんですね一語一句それ 3:31 とりあえず1文1文ですね完璧に 3:34 読み進めようとしてしまう人それそういう 3:36 人はですね実はなかなか 3:38 あの数学とりわけ純粋数学には向かないん 3:42 ですね つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/854
871: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/13(木) 16:44:08.55 ID:mxQOAQvq >>861-863 そうそう 1)それで、線形代数に限って話をすると 線形代数が使われる 隣接分野が 沢山あるわけで その 隣接分野を学ぶと MM(数学成熟度)が上がって、線形代数の見え方が変わる 2)隣接分野を沢山学ぶと、どんどん MM(数学成熟度)が上がって、見え方が変わる 例えば、下記 『線形代数と関数解析学—無限次元の考え方』とか 3)なので、その人それぞれの 見え方 考えでいいと思う もう一つは、いろんな切り口で考える。関連分野との切り口でね 正方行列だの正則行列だの 重箱の隅みたいなところを、必死に”ツッツク”落ちコボレさん そんな暇があったら、”関数解析学—無限次元”でも勉強する方がためになるだろう 『“線形代数の力”:その計り知れない威力』が、売り口上らしいw ;p) (参考) https://www.ms.u-tokyo.ac.jp/~yasuyuki/suri0806.pdf 特集/“線形代数の力”:その計り知れない威力 数理科学 NO.540,JUNE 2008 線形代数と関数解析学—無限次元の考え方 河東 泰之 1. はじめに 線形代数は線形空間とその上の線形作用素を取り扱う. ごく基礎的な部分は線形空間が有限次元でも無限次元でも違いはないが, 線形代数の中心的な話題,すなわち対角化,ジョルダン標準形,ランクの話などは,線形空間が有限次元でないと話がうまく進まない. そもそも行列を具体的に書く話が線形代数の中心であり,無限サイズの行列は最初から話に入っていない. この意味で通常の線形代数は有限次元の理論であると言ってもさしつかえない. これを無限次元で考察するのが関数解析学である. しかし,単に無限次元の線形空間やその上の線形作用素を考えたのでは,手がかりが少なすぎて,意味のある一般論はほとんど何も展開できない. そこで新たな手法が必要になる.それが収束の概念である. これを導入し,位相的な考察を加えた無限次元の線形代数が関数解析学である. http://rio2016.5ch.net/test/read.cgi/math/1738367013/871
872: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/13(木) 16:59:52.83 ID:mxQOAQvq >>870 >「正方行列の群」は何度読んでも馬鹿発言だなあとしみじみ思うけど ふっ まだ言ってら〜 おサルさんw >>7-10 正方行列の群 ↓ 正方行列の(成す)群 とでも補えば なんということもないw 群の定義に当てはめて、自然に逆元の存在と、単位元e が含まれる いま、簡便に 行列の成分を 実数R or 複素数Cに限る すると、ある nxn (nは2以上) の 正方行列全体 は、環Rを成す その環Rの中の 乗法の成す部分を群Gとして R\G の部分が、零因子行列でしょ? >>8の「零因子行列のことだろ?知っているよ」は、 これを一言で言ったんだよ!w これが、分からなかった人がいるけどね・・ ww ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/872
907: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/14(金) 13:56:15.03 ID:PWoDQ15e >>899 >飯高先生と同席させてもらった。 >そのとき「元気だね」と言って >ポンと肩をたたいてくれたのが >うれしかった なるほど 飯高先生『吉田健介さんの思いで』を、貼っておきますね 新谷卓郎先生か。久しぶりにお名前を見ました <S君の日記から・・> ”固有値を0、hp,−hpと誤置し、固有ベクトルの計算に不可解な矛盾を生じたり”か 『固有値を0』が なんかヘンですね。固有値0ね・・。行列だと、退化しているのかな?w ;p) (参考) https://ja.wikipedia.org/wiki/%E5%90%89%E7%94%B0%E5%81%A5%E4%B8%80_(%E8%8B%B1%E6%96%87%E5%AD%A6%E8%80%85) 吉田健一 (英文学者) 吉田 健一(1912年〈明治45年〉4月1日 - 1977年〈昭和52年〉8月3日)は、日本の文芸評論家、英文学翻訳家、小説家。父は吉田茂、母・雪子は牧野伸顕(内大臣)の娘で、大久保利通の曽孫に当たる。 長男・吉田健介(物理学者) (よしだ けんすけ)1942年9月12日[55]-2008年8月29日 清泉女学院小学校から暁星小学校に転入[56]。暁星中学校・高等学校を卒業し、1961年東京大学理科一類に進学[57][58]。大学2年の夏にケンブリッジ大学に留学[58]。ケンブリッジ大学で博士号を取得[58][59]。イギリスのダラム大学、イタリアのナポリ大学で研究を行う[58]。1974年にイタリア人女性と結婚[60]。ミラノ大学教授[58]、のちローマ大学教授[58]として国際的に活躍した[59]。娘のエレナがいる[58][60]。2008年8月29日、東京聖路加国際病院で肝臓癌のため死去[58][60]。久保山墓地に分骨されている[58]。 http://iitakashigeru.math-academy.net/iitaka123.htm 放送大学多摩数学クラブ http://iitakashigeru.math-academy.net/yoshidaindex.html 吉田健介さんの思いで 吉田健介さんは、1942年東京生まれ、東京大学理科1類2年の夏に英国、ケンブリッジ大学に留学.イギリスで理学博士の学位を授与され、後ローマ大学の物理学教授になる。 2008年8月29日 東京聖路加国際病院にて逝去 この頁は、彼の友人知己が思い出を語るために作られました.管理は飯高がします. http://iitakashigeru.math-academy.net/Yoshida/Iitaka4.pdf 吉田君の思い出1,2,3,4 .... 飯高 茂 2008年9月 大学(昭和36年)に入ってまもなく同級生に吉田君がいた。当時の東京大学には語学振り分けの便宜のためにクラスに分けられていて私たちは理科1類15Bというクラスに属していた。彼ははにかみやだったが、話してみると物理や数学に詳しく、複素解析関数や波動方程式を知っていた。このような高校の教育課程を越える話をごく当たり前のように同級生とできたので、とても楽しかった。大学に入ったおけげで、新しい世界が開け、地平線がどこまでも遠く広がっているように思えた。 とりとめなく吉田君と話をしていると、度の強いめがねをかけ、学生服をきちんと来た人が、傍らに立って身じろぎもしないで、私たちの雑談を立ち聞きしている。話が中断すると、彼はやおらめがねをしっかりと直し、じっとにらむような目つきをして、「みなさまの話を聞いていると、全く理解できないことばかりです。どのような本を読んだら、分かるようになるのでしょうか。ぜひ教えてください」と、きわめて丁寧な言葉で問いかけてきた つづく http://rio2016.5ch.net/test/read.cgi/math/1738367013/907
941: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/15(土) 08:58:44.38 ID:XknlDm4+ >>934 >A' := { g:Λ→∪_{λ∈Λ} X_λ | 任意のλ∈Λに対してg(λ)∈Xλ } >とする。存在例化により選択関数f∈A'が存在する。 1)存在例化は、下記 ja.wikipedia.org & en.wikipedia.orgの意味と解していいかな? もしそうならば、存在例化とは 新しい定数記号cを導入できること ”must be a new term”であること 「証明の結論部にも現れてはならない」”it also must not occur in the conclusion of the proof” ってこと 2)ということは、存在例化で 記号cを導入することは、なんら新しいことを導入したのではなく 単に、証明を読みやすく 簡明にするために 「存在記号 ∃ を消す」 が、しかし 結論には影響しない! ってことでは? 3)ならば、”存在例化により選択関数f∈A'が存在する”という上記陳述が ナンセンスだと思うぜ 実際、解析概論でも、多変数関数論のテキストで良いが 「これが、存在例化でございます!」って、存在例化が威張っている証明ってあるかな? (en.wikipedia では、”but its explicit statement is often left out of explanations”ってあるけど、所詮その程度のしろもの じゃないの?w) (参考) https://ja.wikipedia.org/wiki/%E5%AD%98%E5%9C%A8%E4%BE%8B%E5%8C%96 存在例化 存在例化(そんざいれいか、英: Existential instantiation, Existential elimination)[1][2][3]は、述語論理において、 (∃x)ϕ(x) という形式を持った式が与えられると、新しい定数記号cについて ϕ(c)を推論することができるという、妥当な推論規則のひとつである。この規則は、導入された定数cが、証明にはこれまで用いられてこなかった新しい項でなければならないという制約を有する。 また、証明の結論部にも現れてはならない。 https://.org/wiki/Existential_instantiation Existential instantiation In predicate logic, existential instantiation (also called existential elimination)[1][2] is a rule of inference which says that, given a formula of the form (∃x)ϕ(x), one may infer ϕ(c) for a new constant symbol c. The rule has the restrictions that the constant c introduced by the rule must be a new term that has not occurred earlier in the proof, and it also must not occur in the conclusion of the proof. It is also necessary that every instance of x which is bound to ∃x must be uniformly replaced by c. , but its explicit statement is often left out of explanations. http://rio2016.5ch.net/test/read.cgi/math/1738367013/941
945: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/15(土) 09:35:15.64 ID:XknlDm4+ >>932 (引用開始) >>26 (引用開始) (3(Zornの補題) ⇒ 1(選択公理)) {X_λ}_{λ∈Λ}を非空集合の族とする. A := { g:Σ→∪_{λ∈Λ} X_λ | Σ⊂Λ, 任意のλ∈Σに対してg(λ)∈Xλ } としてAに ⊂ で順序を入れる.B⊂Aを部分全順序集合とするとき ∪g∈B g ∈ A は B の上界である. 即ち A はZornの補題の仮定を満たす.故に極大元 f∈A を持つ. もし dom(f)≠Λ であれば f が極大であることに反するので dom(f)=Λ となる.故に f は選択関数である. (引用終了) 選択関数はAの元なんだから、Aがwell-definedなら選択関数の存在は自明だけどその証明が無いのでは? (引用終り) それ >>26 https://alg-d.com/math/ac/wo_z.html が、元のリンクだね? alg-d 壱大整域さんに質問しなよ、喜んでくれるだろう それとは別に、他の証明と照らし合わせるのが良い、というか 常用のスジだ 下記 ”Zorn's lemma implies the axiom of choice”の証明で 集合族で 和集合”its union U:=⋃X”が一つのスジだ それで、下記 関数 f:X→U を導入する。これが、最後 選択関数になるんだろう Zorn's lemma に乗せるために、順序 ”It is partially ordered by extension; i.e.,”を導入する で、この順序で ”The function g is in P and f<g, a contradiction to the maximality of f.”として 結局 fが極大で 即ち fが 選択関数だと 繰り返すが、上記 alg-d 壱大整域さん と 下記 en.wikipedia を見比べてみな (参考) https://en.wikipedia.org/wiki/Zorn%27s_lemma Zorn's lemma Zorn's lemma implies the axiom of choice A proof that Zorn's lemma implies the axiom of choice illustrates a typical application of Zorn's lemma.[17] Given a set X of nonempty sets and its union U:=⋃X (which exists by the axiom of union), we want to show there is a function f:X→U such that f(S)∈S for each S∈X. For that end, consider the set P={f:X′→U∣X′⊂X,f(S)∈S}. It is partially ordered by extension; i.e., f≤g if and only if f is the restriction of g. If fi:Xi→U is a chain in P, then we can define the function f on the union X′=∪iXi by setting f(x)=fi(x) when x∈Xi. This is well-defined since if i<j, then fi is the restriction of fj . The function f is also an element of P and is a common extension of all fi's. Thus, we have shown that each chain in P has an upper bound in P. Hence, by Zorn's lemma, there is a maximal element f in P that is defined on some X′⊂X. We want to show X′=X. Suppose otherwise; then there is a set S∈X−X′. As S is nonempty, it contains an element s. We can then extend f to a function g by setting g|X′=f and g(S)=s. (Note this step does not need the axiom of choice.) The function g is in P and f<g, a contradiction to the maximality of f. ◻ http://rio2016.5ch.net/test/read.cgi/math/1738367013/945
959: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/15(土) 10:58:08.62 ID:XknlDm4+ >>945 補足 あのさ >>932 って おサルの言っていること、ショボクね? 弥勒菩薩氏から、おっさん基礎論自慢するから ”基礎論婆”とか呼ばれて じゃあ、おっさんどれだけ 基礎論 詳しいんだ? と思ったら、このサマか 笑えるます www ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/959
965: 132人目の素数さん [] 2025/02/15(土) 12:09:37.89 ID:tNB6oeTf >>26の証明って、極大元が存在してそれは選択関数って言ってるんだけど、それは選択関数が極大元となるようにAを定義したからそうなのであって、そこに必然性は何もない。 極大元であろうがなかろうが、選択関数を元として持つ集合を持ち出した時点で証明したい選択関数の存在を前提としてしまっている。これでは証明になっていない。 しょぼいとか言いがかり付けてるどこぞの輩はそんなことも分からないのだろうね。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/965
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.056s