[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
30: 02/02(日)12:17:56.69 ID:7z4Dw9JT(2/18) AAS
 >その後に残ったものに 整列可能定理を適用する 
 整列定理は整列順序の存在しか主張していない。「好きな順序で整列できる」は妄想。 
  
 >3)さて、上記2)で そもそも 整列可能定理とは 
 > 最後が空集合になるまで繰り返して良いとするものだった 
 整列定理の証明において元に対する順序数による附番aαを再帰的に定義している。 
 このaαの定義で選択関数を使っている。だからこの附番のしかたは選択関数で一意に定まる。 
 「勝手な附番を無限回繰り返して良い」は妄想。 
34(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP  02/02(日)12:50:50.69 ID:5scbwZz/(3/12) AAS
 >>33補足 
 >>28 
 (引用開始) 
 >Xの元を すきな順番に整列できる 
 大間違い。 
 順番は選択関数で一意に定まる。 
 (引用終り)
省23
156(1): 02/04(火)17:31:47.69 ID:kyySIsuH(11/19) AAS
 >>151 
 >1)そもそも、公理とは 条件さえ許せば 無制限に適用できる 
 大間違い 
 公理はその適用対象を何も規定していない 
 だから命題ごとに個別に規定要(理論ごと規定する場合は「以下、断り無き場合〇〇公理を前提とする」などと表記) 
158(1): 02/04(火)17:41:52.69 ID:kyySIsuH(13/19) AAS
 >>151 
 >存在は、一つに限らない。 
 選択公理は選択関数が存在するとしか主張していないから、一つに限定していないことは自明過ぎて語るに及ばず 
 あなたは馬鹿なんですか? 
230: 02/06(木)08:20:02.69 ID:YqLfsVRy(10/31) AAS
 >>229 
 私は数論関係には余り興味ない 
422(1): 02/09(日)12:03:06.69 ID:erxXzwp/(1/23) AAS
 >>411 
 >しかし だから、lim n → ω ω := {・・{{{}}}・・}_ω と定義してしまえ! 
 >は、ありだよ 
 {・・{{{}}}・・}_ωは集合なの? 集合ならその元は何? 
621(1): 02/11(火)07:26:26.69 ID:SQ07GpKQ(1/12) AAS
 算術幾何平均の新しい話が「数学」の 
 最新号に載っている 
752: 02/12(水)06:17:42.69 ID:8MrF0Nxi(2/6) AAS
 >>745 
 増補版は中国語の長い注釈付きで 
 ハルピンの出版社からも出されている 
813(1): 02/13(木)06:23:58.69 ID:SX0Ci419(2/17) AAS
 逆行列が存在する条件 
  
 1.零因子でない 
 2.行列式が0でない 
 3.行ベクトルが線形独立 
  
 この三つは論理的に同値 
  
 しかし1と答えるやつはカスw 
 なぜなら、1は行列環に関わる命題だし
省17
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s