[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
950: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/15(土) 09:56:20.09 ID:XknlDm4+ >>945 補足 >A proof that Zorn's lemma implies the axiom of choice illustrates a typical application of Zorn's lemma.[17] えーと、最後の [17]を見ると下記だ Notes 17 Halmos 1960, § 16. Exercise. References Halmos, Paul (1960). Naive Set Theory. Princeton, New Jersey: D. Van Nostrand Company. https://en.wikipedia.org/wiki/Naive_Set_Theory_(book) Naive Set Theory (book) うーんと、海賊版を探すと Naive set theory. Halmos, Paul R. (Paul Richard), 1916-2006. Princeton, N.J., Van Nostrand, [1960] があった (下記 文字化けと乱丁ご容赦) Sec. 16 ZORN'S LEMMA p65 Exercise. Zorn's lemma is equivalent to the axiom of choice. [Hint for the proof: given a set X, consider functions /such that dom/C (P(X), ran/dX, and f(A)eA for all A in dom/; order these functions by extension, use Zorn's lemma to find a maximal one among them, and prove that if/ismaximal, then dom/= <P(X) — {0}.] Consider each of the following statements and prove that they too are equivalent to the axiom of choice. (i) Every partially ordered set has a maximal chain (i.e., a chain that is not a proper subset of any other chain). (ii) Every chain in a partially ordered set is included in some maximal chain. (iii) Every partially ordered set in which each chain has a least upper bound has a maximal element. (引用終り) か 解答はないかな?・・・ ないね・・ ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/950
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 52 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.013s