[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
950: 現代数学の系譜 雑談 ◆yH25M02vWFhP  02/15(土)09:56 ID:XknlDm4+(3/10) AAS
 >>945 補足 
 >A proof that Zorn's lemma implies the axiom of choice illustrates a typical application of Zorn's lemma.[17] 
  
 えーと、最後の [17]を見ると下記だ 
 Notes 
 17  Halmos 1960, § 16. Exercise. 
 References 
 Halmos, Paul (1960). Naive Set Theory. Princeton, New Jersey: D. Van Nostrand Company. 
 外部リンク:en.wikipedia.org 
 Naive Set Theory (book) 
  
 うーんと、海賊版を探すと 
 Naive set theory. 
 Halmos, Paul R. (Paul Richard), 1916-2006. 
 Princeton, N.J., Van Nostrand, [1960] 
  
 があった (下記 文字化けと乱丁ご容赦) 
 Sec. 16  ZORN'S LEMMA p65 
 Exercise.  
 Zorn's lemma is equivalent to the axiom of choice.  
 [Hint 
 for the proof: given a set X, consider functions /such that dom/C 
 (P(X), ran/dX, and f(A)eA for all A in dom/; order these functions 
 by extension, use Zorn's lemma to find a maximal one among them, and 
 prove that if/ismaximal, then dom/= <P(X) 
 — 
 {0}.] Consider each 
 of the following statements and prove that they too are equivalent to 
 the axiom of choice. 
 (i) 
 Every partially ordered set has a maximal 
 chain (i.e., a chain that 
 is 
 not 
 a 
 proper subset of any other chain). 
 (ii) 
 Every chain in 
 a 
 partially ordered set 
 is 
 included in some maximal chain. 
 (iii) Every partially ordered set in which each chain has 
 a 
 least upper 
 bound has a maximal element. 
 (引用終り) 
  
 か 
 解答はないかな?・・・ ないね・・  ;p) 
上下前次1-新書関写板覧索設栞歴
あと 52 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.012s