[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
34: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 12:50:50.69 ID:5scbwZz/ >>33補足 >>28 (引用開始) >Xの元を すきな順番に整列できる 大間違い。 順番は選択関数で一意に定まる。 (引用終り) 赤 摂也 貼っておきます 『整列可能定理 とは, 次の命題のことに他ならない. (W) いかなる集合も、その上に適当に関係≦を定義して,整列集合にすることが出来る』 これで すきな順番に → 適当に関係≦を定義して と書き換えれば、赤 摂也の 整列可能定理になる ”すきな順番に”が、不適当でない限り 整列可能定理の射程内ですよ ;p) (参考) www.jstage.jst.go.jp/article/kisoron1954/5/3/5_3_103/_article/-char/ja/ 科学基礎論研究/5 巻 (1960-1962) 3 号/書誌 選択公理をめぐって 赤 摂也 1961 年 5 巻 3 号 p. 103-108 www.jstage.jst.go.jp/article/kisoron1954/5/3/5_3_103/_pdf/-char/en 選択公理をめぐって 赤 摂也 科学基礎論研究/5 巻 (1960-1962) 3 号 順序集合は (6) 空でないいかなる部分順序集合.最小元を持つという条件 をみたすとき,整列集合といわれる. 整列可能定理 とは, 次の命題のことに他ならない. (W) いかなる集合も、その上に適当に関係≦を定義して,整列集合にすることが出来る. (A),(Z),(W)の同等性の証明については, たとえば拙文 〔1〕を見ていただきたい. (余談ですが 貼ります) 定理4(Sierpinski)一般連続体仮設は選択公理を含意する. [1] 文 献 S. Seki ; On transfinite inferences, Comm. Math. Univ. Sancti Pauli, IV, 1955 http://rio2016.5ch.net/test/read.cgi/math/1738367013/34
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 968 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.013s