[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
182: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 07:51:08.42 ID:Md2R2j9H >>180 >>任意のベクトルを無限個のベクトルの線形結合で表すことである.ヒルベルト空間では,これを実現する正規直交基底を取ることがいつでもでき,有限次元空間とよく似た話が無限次元でも展開できる.フーリエ級数はその具体例として大変重要なものである. >これ、選択公理を使うだろうと思って調べていた >下記 山上滋先生 名大 関数解析入門 『命題4.5.ヒルベルト空間の正規直交基底は必ず存在する。(全然一意的ではないが。) >Proof.基本的なアイデアはの直交化であるが、正式にはのZorn補題を使う。各自、確かめよ』 >ですね (^^ <補足> 1)Zorn補題は、選択公理と同値 2)Zorn補題(選択公理)で、通常のベクトル空間(基底の有限和)から 基底の無限個のベクトルの線形結合を使う ヒルベルト空間まで その空間の基底の存在と、次元(ベクトル空間の場合 基底の集合の濃度を意味する。可算にする場合が多いらしい)が決められる 3)『全然一意的ではないが』 by 山上滋先生 名大 存在のみのZorn補題(選択公理)で、言える 4)その存在定理の典型的な、使い方が>>110だね 同様に、例えば、ヒルベルト空間で ある特別な基底候補を使いたいとき まず、上記 命題4.5 に照らしてみれば良い そうすれば、その基底候補が、実際に基底として使えることが分る フーリエ級数が、典型例>>160 "Zorn補題(選択公理)は、存在しか言えないから 具体的なこと言えない"と思った あなた それ勘違いですよ 存在の公理(定理)だから、適用範囲が広い そして、ある空間の 基底の存在定理、次元定理から 具体的な 基底候補が、実際の基底として採用できることが分る http://rio2016.5ch.net/test/read.cgi/math/1738367013/182
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 820 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.009s